Experience in assessing heart rate variability by smoothed cardiointervalograms
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 176-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

The objective of this study is to show the possibility of using the smoothing cardiointervalograms (CIG) method which is solely time domain analysis of CIG to separate and display the influence of various mechanisms of human physiological regulation systems on his heart rate. Methods. This paper shows the possibility of using the method of smoothing the cardiointervalogram by means of a moving average for its subsequent decomposition into slow and fast components. Decomposition results are visualized by line graphs and pseudo-phase portraits. Visualization settings allow us to isolate unique transients and calculate its timing. The method is applied to data obtained under different subject functional states and differing in the level of adaptation risks, the presence or absence of stress. For analysis were selected stress episodes detected using the information and telecommunication technology of event-related cardiac telemetry (ITT ERCT) presented by the Internet resource "StressMonitor". Results. For the numerical series of RR-intervals, a clear division into fast and slow components is obtained. An algorithm for identifying the frequency content of heart rate variability has been formulated and tested. A visualization method is proposed that is convenient for comparing data obtained for different patients. A pseudo-phase portrait pattern corresponding to the moment of stress onset is found. The proposed method reduced the discreteness of identifying the stress onset moment from 10 seconds to single heart beats. Conclusion. The correspondence of the results to the verified ITT ERCT method and the Baevsky–Chernikova concept of adaptive risk has been demonstrated. This confirms the possibility of using the time cardiointervalograms smoothing method for the analysis of heart rate variability.
Keywords: heart rate variability, hierarchy of cardioregulatory times, pseudo phase portrait, stress, time domain analysis heart rate variability, cardiointervalograms smoothing, simple moving average, RR-intervals visualization.
@article{IVP_2022_30_2_a3,
     author = {M. V. Nikulina and V. A. Antonets},
     title = {Experience in assessing heart rate variability by smoothed cardiointervalograms},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {176--188},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a3/}
}
TY  - JOUR
AU  - M. V. Nikulina
AU  - V. A. Antonets
TI  - Experience in assessing heart rate variability by smoothed cardiointervalograms
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 176
EP  - 188
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a3/
LA  - ru
ID  - IVP_2022_30_2_a3
ER  - 
%0 Journal Article
%A M. V. Nikulina
%A V. A. Antonets
%T Experience in assessing heart rate variability by smoothed cardiointervalograms
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 176-188
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a3/
%G ru
%F IVP_2022_30_2_a3
M. V. Nikulina; V. A. Antonets. Experience in assessing heart rate variability by smoothed cardiointervalograms. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 176-188. http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a3/

[1] Baevskii R. M., Ivanov G. G., “Variabelnost serdechnogo ritma: teoreticheskie aspekty i vozmozhnosti klinicheskogo primeneniya”, Ultrazvukovaya i funktsionalnaya diagnostika, 2001, no. 3, 108–127

[2] Baevskii R. M., Funtova I. I., Berseneva A. P., Chernikova A. G., Luchitskaya E. S., Prilutskii D. A., Semenov Yu. N., Tank I., Slepchenkova I. N., Rusanov V. B., Bersenev E. Yu., Ivanov G. G., Metody i pribory kosmicheskoi kardiologii na bortu Mezhdunarodnoi kosmicheskoi stantsii: monografiya, Tekhnosfera, Moskva, 2016, 368 pp.

[3] Baevskii R. M., Ivanov G. G., Chireikin L. V., Gavrilushkin A. P., Dovgalevskii P. Ya., Kukushkin Yu. A., Mironova T. F., Prilutskii D. A., Semenov A. V., Fedorov V. F., Fleishman A. N., Medvedev M. M., “Analiz variabelnosti serdechnogo ritma pri ispolzovanii razlichnykh elektrokardiograficheskikh sistem (Metodicheskie rekomendatsii, chast 1)”, Vestnik aritmologii, 2002, no. 24, 65–87

[4] Malik M., Bigger Dzh. T., Kamm A. Dzh., Klyaiger R. E., Malliani A., Moss A. Dzh., Shvarts P. Dzh., “Variabelnost serdechnogo ritma. Standarty izmereniya, fiziologicheskoi interpretatsii i klinicheskogo ispolzovaniya”, Vestnik aritmologii, 1999, no. 11, 52–77

[5] Goldstein D. S., Kopin I. J., “Homeostatic systems, biocybernetics, and autonomic neuroscience”, Autonomic Neuroscience, 208 (2017), 15–28 | DOI

[6] Polevaya S. A., Eremin E. V., Bulanov N. A., Bakhchina A. V., Kovalchuk A. V., Parin S. B., “Sobytiino-svyazannaya telemetriya ritma serdtsa dlya personifitsirovannogo distantsionnogo monitoringa kognitivnykh funktsii i stressa v usloviyakh estestvennoi deyatelnosti”, \linebreak Sovremennye tekhnologii v meditsine, 11:1 (2019), 109–115 | DOI

[7] Ellis R. J., Thayer J. F., “Music and autonomic nervous system (dys)function”, Music Perception, 27:4 (2010), 317–326 | DOI

[8] Antonets V. A., Permyakov S. P., Nikulina M. V., “Primenenie sglazhivaniya kardiointerva- logramm dlya analiza variabelnosti serdechnogo ritma”, Materialy VII Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem «Variabelnost serdechnogo ritma: teoreticheskie aspekty i prakticheskoe primenenie v sporte i massovoi fizicheskoi kulture» (25-26 maya 2021, UdGU, Izhevsk), UdGU, Izhevsk, 2021, 67–74

[9] Ryabykina G. V., Sobolev A. V., “Analiz variabelnosti ritma serdtsa”, Kardiologiya, 36:10 (1996), 87–97

[10] Baevskii R. M., Kirillov O. I., Kletskin S. Z., Matematicheskii analiz izmenenii serdechnogo ritma pri stresse, Nauka, Moskva, 1984, 224 pp.

[11] Shlyufman K. V., Fishman B. E., Frisman E. Ya., “Osobennosti dinamicheskikh rezhimov odnomernoi modeli Rikera”, Izvestiya vuzov. PND, 20:2 (2012), 12–28 | DOI

[12] Baevskii R. M., Chernikova A. G., “Problema fiziologicheskoi normy: matematicheskaya model funktsionalnykh sostoyanii na osnove analiza variabelnosti serdechnogo ritma”, Aviakosmicheskaya i ekologicheskaya meditsina, 36:6 (2002), 11–17

[13] Baevskii R. M., Chernikova A. G., Sposob otsenki riska razvitiya donozologicheskikh, premorbidnykh i patologicheskikh sostoyanii v dlitelnom kosmicheskom polete, Patent # 2448644 ot 15.09.2010. Zayavitel: Institut mediko-biologicheskikh problem Rossiiskoi akademii nauk

[14] Parin S. B., “Lyudi i zhivotnye v ekstremalnykh situatsiyakh: neirokhimicheskie mekhanizmy, evolyutsionnyi aspekt”, Vestnik Novosibirskogo gosudarstvennogo universiteta. Seriya: Psikhologiya, 2:2 (2008), 118–135

[15] Nekrasova M. M., Polevaya S. A., Parin S. B., Shishalov I. S., Bakhchina A. V., Sposob opredeleniya stressa, Patent # 2531443 ot 11.11.2013. Zayavitel: Federalnoe gosudarstvennoe byudzhetnoe obrazovatelnoe uchrezhdenie vysshego professionalnogo obrazovaniya «Nizhegorodskii gosudarstvennyi universitet im. N. I. Lobachevskogo»

[16] Grigoreva K. A., Grigoreva V. N., Polevaya S. A., Sposob diagnostiki stressa u cheloveka, Patent # 2624813 ot 11.08.2016. Zayavitel: Federalnoe gosudarstvennoe byudzhetnoe obrazovatelnoe uchrezhdenie vysshego obrazovaniya «Nizhegorodskaya gosudarstvennaya meditsinskaya akademiya» Ministerstva zdravookhraneniya Rossiiskoi Federatsii