Hunt for chimeras in fully coupled networks of nonlinear oscillators
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 152-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to study the dynamic properties of solutions to special systems of ordinary differential equations, called fully connected networks of nonlinear oscillators. Methods. A new approach to obtain periodic regimes of the chimeric type in these systems is proposed, the essence of which is as follows. First, in the case of a symmetric network, a simpler problem is solved of the existence and stability of quasi-chimeric solutions - periodic regimes of two-cluster synchronization. For each of these modes, the set of oscillators falls into two disjoint classes. Within these classes, full synchronization of oscillations is observed, and every two oscillators from different classes oscillate asynchronously. Results. On the basis of the proposed methods, it is separately established that in the transition from a symmetric system to a general network, the periodic regimes of two-cluster synchronization can be transformed into chimeras. Conclusion. The main statements of the work concerning the emergence of chimeras were obtained analytically on the basis of an asymptotic study of a model example. For this example, the notion of a canonical chimera is introduced and the statement about the existence and stability of solutions of chimeric type in the case of asymmetry of the network is proved. All the results presented are extended to a continuous analogue of the corresponding system. The obtained results are illustrated numerically.
Keywords: fully coupled network of nonlinear oscillators, periodic modes of two-cluster synchronization, hunting for chimeras, stability, buffering.
@article{IVP_2022_30_2_a2,
     author = {D. S. Glyzin and S. D. Glyzin and A. Yu. Kolesov},
     title = {Hunt for chimeras in fully coupled networks of nonlinear oscillators},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {152--175},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a2/}
}
TY  - JOUR
AU  - D. S. Glyzin
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
TI  - Hunt for chimeras in fully coupled networks of nonlinear oscillators
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 152
EP  - 175
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a2/
LA  - ru
ID  - IVP_2022_30_2_a2
ER  - 
%0 Journal Article
%A D. S. Glyzin
%A S. D. Glyzin
%A A. Yu. Kolesov
%T Hunt for chimeras in fully coupled networks of nonlinear oscillators
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 152-175
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a2/
%G ru
%F IVP_2022_30_2_a2
D. S. Glyzin; S. D. Glyzin; A. Yu. Kolesov. Hunt for chimeras in fully coupled networks of nonlinear oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 152-175. http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a2/

[1] Kuramoto Y., Battogtokh D., “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385

[2] Abrams D. M., Strogatz S. H., “Chimera states for coupled oscillators”, Phys. Rev. Lett., 93:17 (2004), 174102 | DOI

[3] Panaggio M. J., Abrams D. M., “Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators”, Nonlinearity, 28:3 (2015), R67 | DOI

[4] Sethia G. C., Sen A., “Chimera states: The existence criteria revisited”, Phys. Rev. Lett., 112:14 (2014), 144101 | DOI

[5] Schmidt L., Krischer K., “Clustering as a prerequisite for chimera states in globally coupled systems”, Phys. Rev. Lett., 114:3 (2015), 034101 | DOI

[6] Laing C. R., “Chimeras in networks with purely local coupling”, Phys. Rev. E., 92:5 (2015), 050904 | DOI

[7] Laing C. R., “Chimeras in networks of planar oscillators”, Phys. Rev. E., 81:6 (2010), 066221 | DOI

[8] Zakharova A., Kapeller M., Schöll E., “Chimera death: Symmetry breaking in dynamical networks”, Phys. Rev. Lett., 112:15 (2014), 154101 | DOI

[9] Omelchenko I., Zakharova A., Hövel P., Siebert J., Schöll E., “Nonlinearity of local dynamics promotes multi-chimeras”, Chaos, 25:8 (2015), 083104 | DOI

[10] Omelchenko I., Omelchenko O. E., Hövel P., Schöll E., “When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states”, Phys. Rev. Lett., 110:22 (2013), 224101 | DOI

[11] Sakaguchi H., “Instability of synchronized motion in nonlocally coupled neural oscillators”, Phys. Rev. E., 73:3 (2006), 031907 | DOI

[12] Hizanidis J., Kanas V., Bezerianos A., Bountis T., “Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models”, International Journal of Bifurcation and Chaos, 24:3 (2014), 1450030 | DOI

[13] Zakharova A., Chimera Patterns in Networks: Interplay between Dynamics, Structure, Noise, and Delay, Springer, Berlin, 2020, 233 pp. | DOI

[14] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3(423) (2015), 3–76 | DOI

[15] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Periodicheskie rezhimy dvukhklasternoi sinkhronizatsii v polnosvyaznykh gennykh setyakh”, Differentsialnye uravneniya, 52:2 (2016), 157–176 | DOI

[16] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M, 2004, 408 pp.

[17] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M, 2010, 400 pp.

[18] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M, 1970, 535 pp.