@article{IVP_2022_30_2_a2,
author = {D. S. Glyzin and S. D. Glyzin and A. Yu. Kolesov},
title = {Hunt for chimeras in fully coupled networks of nonlinear oscillators},
journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
pages = {152--175},
year = {2022},
volume = {30},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a2/}
}
TY - JOUR AU - D. S. Glyzin AU - S. D. Glyzin AU - A. Yu. Kolesov TI - Hunt for chimeras in fully coupled networks of nonlinear oscillators JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 152 EP - 175 VL - 30 IS - 2 UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a2/ LA - ru ID - IVP_2022_30_2_a2 ER -
D. S. Glyzin; S. D. Glyzin; A. Yu. Kolesov. Hunt for chimeras in fully coupled networks of nonlinear oscillators. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 152-175. http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a2/
[1] Kuramoto Y., Battogtokh D., “Coexistence of coherence and incoherence in nonlocally coupled phase oscillators”, Nonlinear Phenomena in Complex Systems, 5:4 (2002), 380–385
[2] Abrams D. M., Strogatz S. H., “Chimera states for coupled oscillators”, Phys. Rev. Lett., 93:17 (2004), 174102 | DOI
[3] Panaggio M. J., Abrams D. M., “Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators”, Nonlinearity, 28:3 (2015), R67 | DOI
[4] Sethia G. C., Sen A., “Chimera states: The existence criteria revisited”, Phys. Rev. Lett., 112:14 (2014), 144101 | DOI
[5] Schmidt L., Krischer K., “Clustering as a prerequisite for chimera states in globally coupled systems”, Phys. Rev. Lett., 114:3 (2015), 034101 | DOI
[6] Laing C. R., “Chimeras in networks with purely local coupling”, Phys. Rev. E., 92:5 (2015), 050904 | DOI
[7] Laing C. R., “Chimeras in networks of planar oscillators”, Phys. Rev. E., 81:6 (2010), 066221 | DOI
[8] Zakharova A., Kapeller M., Schöll E., “Chimera death: Symmetry breaking in dynamical networks”, Phys. Rev. Lett., 112:15 (2014), 154101 | DOI
[9] Omelchenko I., Zakharova A., Hövel P., Siebert J., Schöll E., “Nonlinearity of local dynamics promotes multi-chimeras”, Chaos, 25:8 (2015), 083104 | DOI
[10] Omelchenko I., Omelchenko O. E., Hövel P., Schöll E., “When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states”, Phys. Rev. Lett., 110:22 (2013), 224101 | DOI
[11] Sakaguchi H., “Instability of synchronized motion in nonlocally coupled neural oscillators”, Phys. Rev. E., 73:3 (2006), 031907 | DOI
[12] Hizanidis J., Kanas V., Bezerianos A., Bountis T., “Chimera states in networks of nonlocally coupled Hindmarsh–Rose neuron models”, International Journal of Bifurcation and Chaos, 24:3 (2014), 1450030 | DOI
[13] Zakharova A., Chimera Patterns in Networks: Interplay between Dynamics, Structure, Noise, and Delay, Springer, Berlin, 2020, 233 pp. | DOI
[14] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3(423) (2015), 3–76 | DOI
[15] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Periodicheskie rezhimy dvukhklasternoi sinkhronizatsii v polnosvyaznykh gennykh setyakh”, Differentsialnye uravneniya, 52:2 (2016), 157–176 | DOI
[16] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M, 2004, 408 pp.
[17] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M, 2010, 400 pp.
[18] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M, 1970, 535 pp.