Dynamics of solutions of nonlinear functional differential equation of parabolic type
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 132-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this work is to study the initial-boundary value problem for a parabolic functional-differential equation in an annular region, which describes the dynamics of phase modulation of a light wave passing through a thin layer of a nonlinear Kerr-type medium in an optical system with a feedback loop, with a rotation transformation (corresponds the involution operator) and the Neumann conditions on the boundary in the class of periodic functions. A more detailed study is made of spatially inhomogeneous stationary solutions bifurcating from a spatially homogeneous stationary solution as a result of a bifurcation of the "fork" type and time-periodic solutions of the "traveling wave" type. Methods. To represent the original equation in the form of nonlinear integral equations, the Green's function is used. The method of central manifolds is used to prove the theorem on the existence of solutions of the indicated equation in a neighborhood of the bifurcation parameter and to study their asymptotic form. Numerical modeling of spatially inhomogeneous solutions and traveling waves was carried out using the Galerkin method. Results. Integral representations of the considered problem are obtained depending on the form of the linearized operator. Using the method of central manifolds, a theorem on the existence and asymptotic form of solutions of the initial-boundary value problem for a functional-differential equation of parabolic type with an involution operator on an annulus is proved. As a result of numerical modeling based on Galerkin approximations, in the problem under consideration, approximate spatially inhomogeneous stationary solutions and time-periodic solutions of the traveling wave type are constructed. Conclusion. The proposed scheme is applicable not only to involutive rotation operators and Neumann conditions on the boundary of the ring, but also to other boundary conditions and circular domains. The representation of the initial-boundary value problem in the form of nonlinear integral equations of the second kind allows one to more simply find the coefficients of asymptotic expansions, prove existence and uniqueness theorems, and also use a different number of expansion coefficients of the nonlinear component in the right-hand side of the original equation in the neighborhood of the selected solution (for example, stationary). Visualization of the numerical solution confirms the theoretical calculations and shows the possibility of forming complex phase structures.
Keywords: optical system, Kerr-type nonlinear medium, parabolic nonlinear equation, involution operator, stability solved.
@article{IVP_2022_30_2_a1,
     author = {A. A. Kornuta and V. A. Lukyanenko},
     title = {Dynamics of solutions of nonlinear functional differential equation of parabolic type},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {132--151},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a1/}
}
TY  - JOUR
AU  - A. A. Kornuta
AU  - V. A. Lukyanenko
TI  - Dynamics of solutions of nonlinear functional differential equation of parabolic type
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 132
EP  - 151
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a1/
LA  - ru
ID  - IVP_2022_30_2_a1
ER  - 
%0 Journal Article
%A A. A. Kornuta
%A V. A. Lukyanenko
%T Dynamics of solutions of nonlinear functional differential equation of parabolic type
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 132-151
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a1/
%G ru
%F IVP_2022_30_2_a1
A. A. Kornuta; V. A. Lukyanenko. Dynamics of solutions of nonlinear functional differential equation of parabolic type. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 2, pp. 132-151. http://geodesic.mathdoc.fr/item/IVP_2022_30_2_a1/

[1] Akhmanov S. A., Vorontsov M. A., Ivanov V. Yu., “Generatsiya struktur v opticheskikh sistemakh s dvumernoi obratnoi svyazyu: na puti k sozdaniyu nelineino-opticheskikh analogov neironnykh setei”, Novye fizicheskie printsipy opticheskoi obrabotki informatsii, Nauka, M., 1990, 263–325

[2] Razgulin A. V., “Zadacha upravleniya dvumernym preobrazovaniem prostranstvennykh argumentov v parabolicheskom funktsionalno-differentsialnom uravnenii”, Differentsialnye uravneniya, 42:8 (2006), 1078–1091

[3] Razgulin A. V., Nelineinye modeli opticheskoi sinergetiki, MAKS Press, M., 2008, 203 pp.

[4] Akhmanov S. A., Vorontsov M. A., Ivanov V. Y., Larichev A. V., Zheleznykh N. I., “Controlling transverse-wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures”, J. Opt. Soc. Am. B, 9:1 (1992), 78–90 | DOI

[5] Vorontsov M. A., Razgulin A. V., “Properties of global attractor in nonlinear optical system having nonlocal interactions”, Photonics and Optoelectronics, 1:2 (1993), 103–111

[6] Chesnokov S. S., Rybak A. A., “Spatiotemporal chaotic behavior of time-delayed nonlinear optical systems”, Laser Physics, 10:5 (2000), 1061–1068

[7] Iroshnikov N. G., Vorontsov M. A., “Transverse rotating waves in the non-linear optical system with spatial and temporal delay”, Frontiers in Nonlinear Optics: The Sergei Akhmanov Memorial Volume, eds. Walther H., Koroteev N., Scully M. O., CRC Press, Boca Raton, 1993, 261–278

[8] Razgulin A. V., “Finite-dimensional dynamics of distributed optical systems with delayed feedback”, Computers and Mathematics with Applications, 40:12 (2000), 1405–1418 | DOI

[9] Kamenskii G. A., Myshkis A. D., Skubachevskii A. L., “O minimume kvadratichnogo funktsionala i o lineinykh kraevykh zadachakh ellipticheskogo tipa s otklonyayuschimisya argumentami”, UMN, 34:3(207) (1979), 197–198

[10] Bellman R., Kuk K., Differentsialno-raznostnye uravneniya, Mir, M., 1967, 548 pp.

[11] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 424 pp.

[12] Skubachevskii A. L., “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differentsialnye uravneniya, 34:10 (1998), 1394–1401

[13] Varfolomeev E. M., “O bifurkatsii Andronova–Khopfa dlya kvazilineinykh parabolicheskikh funktsionalno-differentsialnykh uravnenii s preobrazovaniyami prostranstvennykh peremennykh”, UMN, 62:2(374) (2007), 173–174 | DOI

[14] Varfolomeev E. M., “O nekotorykh svoistvakh ellipticheskikh i parabolicheskikh funktsionalno-differentsialnykh operatorov, voznikayuschikh v nelineinoi optike”, Sovremennaya matematika. Fundamentalnye napravleniya, 21 (2007), 5–36

[15] Muravnik A. B., “O zadache Koshi dlya nekotorykh neodnorodnykh differentsialno-raznostnykh parabolicheskikh uravnenii”, Matematicheskie zametki, 74:4 (2003), 538–548 | DOI

[16] Muravnik A. B., “Funktsionalno-differentsialnye parabolicheskie uravneniya: integralnye predstavleniya i kachestvennye svoistva reshenii zadachi Koshi”, Sovremennaya matematika. Fundamentalnye napravleniya, 52 (2014), 3–141

[17] Razgulin A. V., “Rotatsionnye volny v opticheskoi sisteme s dvumernoi obratnoi svyazyu”, Matematicheskoe modelirovanie, 5:4 (1993), 105–119

[18] Razgulin A. V., Romanenko T. E., “Vraschayuschiesya volny v parabolicheskom funktsionalno-differentsialnom uravnenii s povorotom prostranstvennogo argumenta i zapazdyvaniem”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 53:11 (2013), 1804–1821 | DOI

[19] Romanenko T. E., “Dvumernye vraschayuschiesya volny v funktsionalno-differentsialnom uravnenii diffuzii s povorotom prostranstvennykh argumentov i zapazdyvaniem”, Differentsialnye uravneniya, 50:2 (2014), 260–263 | DOI

[20] Belan E. P., “O vzaimodeistvii beguschikh voln v parabolicheskom funktsionalno-differentsialnom uravnenii”, Differentsialnye uravneniya, 40:5 (2004), 645–654

[21] Belan E. P., “O dinamike beguschikh voln v parabolicheskom uravnenii s preobrazovaniem sdviga prostranstvennoi peremennoi”, Zhurnal matematicheskoi fiziki, analiza, geometrii, 1:1 (2005)

[22] Belan E. P., Khazova Yu. A., “Dinamika statsionarnykh struktur v parabolicheskoi zadache na okruzhnosti s otrazheniem prostranstvennoi peremennoi”, Dinamicheskie sistemy, 4:1–2(32) (2014), 43–57

[23] Belan E. P., Shiyan O. V., “Avtokolebatelnye rezhimy goreniya vdol polosy”, Dinamicheskie sistemy, 2009, no. 27, 3–16

[24] Kornuta A. A., “Metaustoichivye struktury v parabolicheskom uravnenii na okruzhnosti s povorotom prostranstvennoi peremennoi”, Dinamicheskie sistemy, 4:1–2(32) (2014), 59–75

[25] Belan E. P., Lykova O. B., “Vraschayuschiesya struktury v parabolicheskom funktsionalno-differentsialnom uravnenii”, Differentsialnye uravneniya, 40:10 (2004), 1348–1357

[26] Larichev A. V., Dinamicheskie protsessy v nelineinykh opticheskikh sistemakh s dvumernoi obratnoi svyazyu, dis. ... kand. fiz.-mat. nauk: 01.04.21, MGU im. M. V. Lomonosova, M., 1995, 108 pp.

[27] Grigorieva E. V., Haken H., Kashchenko S. A., Pelster A., “Travelling wave dynamics in a nonlinear interferometer with spatial field transformer in feedback”, Physica D, 125:1–2 (1999), 123–141 | DOI

[28] Glyzin S. D., Kolesov A. Yu., Rozov N. Kh., “Diffuzionnyi khaos i ego invariantnye chislovye kharakteristiki”, Teoreticheskaya i matematicheskaya fizika, 203:1 (2020) | DOI

[29] Karapetyants N. K., Samko S. G., Uravneniya s involyutivnymi operatorami i ikh prilozheniya, Izdatelstvo Rostovskogo universiteta, Rostov, 1988, 187 pp.

[30] Khazova Yu. A., Lukyanenko V. A., “Primenenie integralnykh metodov dlya issledovaniya odnoi parabolicheskoi zadachi”, Izvestiya vuzov. PND, 27:4 (2019), 85–98 | DOI

[31] Kornuta A. A., Lukyanenko V. A., “Funktsionalno-differentsialnye uravneniya parabolicheskogo tipa s operatorom involyutsii”, Dinamicheskie sistemy, 9(37):4 (2019), 390–409

[32] Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, eds. M. Abramovits, I. Stigan, Nauka, M., 1979, 832 pp.

[33] Mischenko E. F., Sadovnichii V. A., Kolesov A. Yu., Rozov N. Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005, 430 pp.

[34] Arecchi F. T., Boccaletti S., Ducci S., Pampaloni E., Ramazza P. L., Residori S., “The liquid crystal light valve with optical feedback: A case study in pattern formation”, Journal of Nonlinear Optical Physics Materials, 9:2 (2000), 183–204 | DOI

[35] V. I. Arnold, Yu. S. Ilyashenko, “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 7–140

[36] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985, 376 pp.

[37] Beitmen G., Erdeii A., Tablitsy integralnykh preobrazovanii, v. 2, Preobrazovaniya Besselya Integraly ot spetsialnykh funktsii, Nauka, M., 1970, 328 pp.