Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_1_a7, author = {A. V. Shabunin}, title = {Selection of spatial modes in an ensemble of non-locally coupled chaotic maps}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {109--124}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a7/} }
TY - JOUR AU - A. V. Shabunin TI - Selection of spatial modes in an ensemble of non-locally coupled chaotic maps JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 109 EP - 124 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a7/ LA - ru ID - IVP_2022_30_1_a7 ER -
A. V. Shabunin. Selection of spatial modes in an ensemble of non-locally coupled chaotic maps. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 1, pp. 109-124. http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a7/
[1] Anischenko V. S., Postnov D. E., Safonova M. A., “Razmernost i fizicheskie svoistva khaoticheskikh attraktorov tsepochki svyazannykh generatorov”, Pisma v ZhTF, 11:24 (1985), 1505–1509
[2] Anischenko V. S., Aranson I. S., Postnov D. E., Rabinovich M. I., “Prostranstvennaya sinkhronizatsiya i razvitie bifurkatsii v tsepochke svyazannykh ostsillyatorov”, Doklady Akademii nauk SSSR, 286:5 (1986), 1120–1124
[3] Fujisaka H., Yamada T., “Stability theory of synchronized motion in coupled-oscillator systems”, Progress of Theoretical Physics, 69:1 (1983), 32–47 | DOI
[4] Yamada T., Fujisaka H., “Stability theory of synchronized motion in coupled-oscillator systems. II: The mapping approach”, Progress of Theoretical Physics, 70:5, P (1983), 1240–1248 | DOI
[5] Anishchenko V. S., Vadivasova T. E., Postnov D. E., Safonova M. A., “Synchronization of chaos”, International Journal of Bifurcation and Chaos, 2:3 (1992), 633–644 | DOI
[6] Heagy J. F., Carroll T. L., Pecora L. M., “Synchronous chaos in coupled oscillator systems”, Phys. Rev. E, 50:3 (1994), 1874–1884 | DOI
[7] Ren L., Ermentrout B., “Phase locking in chains of multiple-coupled oscillators”, Physica D, 143:1–4 (2000), 56–73 | DOI
[8] Shabunin A. V., Akopov A. A., Astakhov V. V., Vadivasova T. E., “Beguschie volny v diskretnoi angarmonicheskoi avtokolebatelnoi srede”, Izvestiya vuzov. PND, 13:4 (2005), 37–55 | DOI
[9] Kuramoto Y., Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984, 158 pp. | DOI
[10] Cross M. C., Hohenberg P. C., “Pattern formation outside of equilibrium”, Rev. Mod. Phys., 65:3 (1993), 851–1112 | DOI
[11] Mosekilde E., Maistrenko Y., Postnov D., Chaotic Synchronization: Applications to Living Systems, World Scientific, Singapore, 2002, 440 pp. | DOI
[12] Arecchi F. T., Meucci R., Puccioni G., Tredicce J., “Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser”, Phys. Rev. Lett., 49:17 (1982), 1217–1220 | DOI
[13] Astakhov V. V., Bezruchko B. P., Gulyaev Yu. P., Seleznev E. P., “Multistabilnye sostoyaniya dissipativno svyazannykh feigenbaumovskikh sistem”, Pisma v ZhTF, 15:3 (1989), 60–65
[14] Astakhov V. V., Bezruchko B. P., Pudovochkin O. B., Seleznev E. P., “Fazovaya multistabilnost i ustanovlenie kolebanii v nelineinykh sistemakh s udvoeniem perioda”, Radiotekhnika i elektronika, 38:2 (1993), 291–295
[15] Prengel F., Wacker A., Schöll E., “Simple model for multistability and domain formation in semiconductor superlattices”, Phys. Rev. B, 50:3 (1994), 1705–1712 | DOI
[16] Sun N. G., Tsironis G. P., “Multistability of conductance in doped semiconductor superlattices”, Phys. Rev. B, 51:16 (1995), 11221–11224 | DOI
[17] Foss J., Longtin A., Mensour B., Milton J., “Multistability and delayed recurrent loops”, Phys. Rev. Lett., 76:4 (1996), 708–711 | DOI
[18] Abrams D. M., Strogatz S. H., “Chimera states for coupled oscillators”, Phys. Rev. Lett., 93:17 (2004), 174102 | DOI
[19] Omelchenko I., Maistrenko Y., Hövel P., Schöll E., “Loss of coherence in dynamical networks: Spatial chaos and chimera states”, Phys. Rev. Lett., 106:23 (2011), 234102 | DOI
[20] Hagerstrom A. M., Murphy T. E., Roy R., Hövel P., Omelchenko I., Schöll E., “Experimental observation of chimeras in coupled-map lattices”, Nature Physics, 8:9 (2012), 658–661 | DOI
[21] Bogomolov S. A., Strelkova G. I., Schöll E., Anischenko V. S., “Amplitudnye i fazovye khimery v ansamble khaoticheskikh ostsillyatorov”, Pisma v ZhTF, 42:14 (2016), 103–110
[22] Gopal R., Chandrasekar V. K., Venkatesan A., Lakshmanan M., “Observation and characterization of chimera states in coupled dynamical systems with nonlocal coupling”, Phys. Rev. E, 89:5 (2014), 052914 | DOI
[23] Shabunin A., Astakhov V., Kurths J., “Quantitative analysis of chaotic synchronization by means of coherence”, Phys. Rev. E, 72:1 (2005), 016218 | DOI
[24] Shabunin A. V., “Multistabilnost periodicheskikh orbit v ansamble otobrazhenii s dalnodeistvuyuschimi svyazyami”, Izvestiya vuzov. PND, 26:2 (2018), 5–23 | DOI
[25] Shabunin A., “Selective properties of diffusive couplings and their influence on spatiotemporal chaos”, Chaos, 31:7 (2021), 073132 | DOI
[26] Kaneko K., “Pattern dynamics in spatiotemporal chaos: Pattern selection, diffusion of defect and pattern competition intermettency”, Physica D, 34:1–2 (1989), 1–41 | DOI