Hemodynamic response in the motor cortex to execution of different types of movements
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 1, pp. 96-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of this work is the analysis of the hemodynamic response to the execution of various types of movements (single movement, series of movements, "tapping") by the right hand. Methods. In this paper, the hemodynamic response was recorded using functional near infrared spectroscopy (NIRScout instrument from NIRx, Germany). The NIRScout system uses 16 optodes (8 sources and 8 detectors) to record the hemodynamic response in the cerebral cortex with a sampling rate of 7.8125 Hz. Optodes are non-invasively placed on the patient's scalp by inserting into the sockets of a special cap "EASYCAP". Results. We show that the total hemodynamic response in the motor cortex of the left hemisphere slightly differs between all the considered types of movement, while the severity of contralaterality demonstrates significant differences between the types of movements. Contralaterality is most pronounced when performing a series of movements, while a single squeeze of the hand causes the least contralaterality. Conclusion. The results obtained in this paper demonstrate the high sensitivity of functional near-infrared spectroscopy technology to the performance of various types of movements. It should be especially noted here short single hand squeezes, which are clearly visible on the characteristics of HbO and HbR, which can be used in the development and design of various brain – computer interfaces, including multimodal ones.
Keywords: hemodynamic response, functional NIRS, tapping, hand movement, brain activity.
@article{IVP_2022_30_1_a6,
     author = {A. A. Badarin and V. V. Grubov and A. V. Andreev and V. M. Antipov and S. A. Kurkin},
     title = {Hemodynamic response in the motor cortex to execution of different types of movements},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {96--108},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a6/}
}
TY  - JOUR
AU  - A. A. Badarin
AU  - V. V. Grubov
AU  - A. V. Andreev
AU  - V. M. Antipov
AU  - S. A. Kurkin
TI  - Hemodynamic response in the motor cortex to execution of different types of movements
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 96
EP  - 108
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a6/
LA  - ru
ID  - IVP_2022_30_1_a6
ER  - 
%0 Journal Article
%A A. A. Badarin
%A V. V. Grubov
%A A. V. Andreev
%A V. M. Antipov
%A S. A. Kurkin
%T Hemodynamic response in the motor cortex to execution of different types of movements
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 96-108
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a6/
%G ru
%F IVP_2022_30_1_a6
A. A. Badarin; V. V. Grubov; A. V. Andreev; V. M. Antipov; S. A. Kurkin. Hemodynamic response in the motor cortex to execution of different types of movements. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 1, pp. 96-108. http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a6/

[1] Bansal K., Garcia J. O., Tompson S. H., Verstynen T., Vettel J. M., Muldoon S. F., “Cognitive chimera states in human brain networks”, Science Advances, 5:4 (2019), eaau8535 | DOI

[2] Brittin C. A., Cook S. J., Hall D. H., Emmons S. W., Cohen N., “A multi-scale brain map derived from whole-brain volumetric reconstructions”, Nature, 591:7848 (2021), 105–110 | DOI

[3] Andreev A. V., Maksimenko V. A., Pisarchik A. N., Hramov A. E., “Synchronization of interacted spiking neuronal networks with inhibitory coupling”, Chaos, Solitons Fractals, 146 (2021), 110812 | DOI

[4] Hramov A. E., Maksimenko V. A., Pisarchik A. N., “Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states”, Physics Reports, 918 (2021), 1–133 | DOI

[5] Karpov O. E., Grubov V. V., Maksimenko V. A., Utaschev N., Semerikov V. E., Andrikov D. A., Hramov A. E., “Noise amplification precedes extreme epileptic events on human EEG”, Phys. Rev. E, 103:2 (2021), 022310 | DOI

[6] Chholak P., Kurkin S. A., Hramov A. E., Pisarchik A. N., “Event-related coherence in visual cortex and brain noise: An MEG study”, Applied Sciences, 11:1 (2021), 375 | DOI

[7] Maksimenko V., Kuc A., Frolov N., Kurkin S., Hramov A., “Effect of repetition on the behavioral and neuronal responses to ambiguous Necker cube images”, Scientific Reports, 11:1 (2021), 3454 | DOI

[8] Villringer A., Planck J., Hock C., Schleinkofer L., Dirnagl U., “Near infrared spectroscopy (NIRS): A new tool to study hemodynamic changes during activation of brain function in human adults”, Neuroscience Letters, 154:1–2 (1993), 101–104 | DOI

[9] Abdelnour A. F., Huppert T., “Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model”, NeuroImage, 46:1 (2009), 133–143 | DOI

[10] Lachert P., Janusek D., Pulawski P., Liebert A., Milej D., Blinowska K. J., “Coupling of Oxy- and Deoxyhemoglobin concentrations with EEG rhythms during motor task”, Scientific Reports, 7:1 (2017), 15414 | DOI

[11] Leff D. R., Orihuela-Espina F., Elwell C. E., Athanasiou T., Delpy D. T., Darzi A. W., Yang G.-Z., “Assessment of the cerebral cortex during motor task behaviours in adults: A systematic review of functional near infrared spectroscopy (fNIRS) studies”, NeuroImage, 54:4 (2011), 2922–2936 | DOI

[12] Derosiére G., Mandrick K., Dray G., Ward T. E., Perrey S., “NIRS-measured prefrontal cortex activity in neuroergonomics: strengths and weaknesses”, Frontiers in Human Neuroscience, 7 (2013), 583 | DOI

[13] Ayaz H., Shewokis P. A., Bunce S., Izzetoglu K., Willems B., Onaral B., “Optical brain monitoring for operator training and mental workload assessment”, NeuroImage, 59:1 (2012), 36–47 | DOI

[14] Naseer N., Hong K.-S., “fNIRS-based brain-computer interfaces: a review”, Frontiers in Human Neuroscience, 9 (2015), 3 | DOI

[15] Badarin A. A., Skazkina V. V., Grubov V. V., “Studying of human’s mental state during visual information processing with combined EEG and fNIRS”, Proc. SPIE, VII International Symposium on Optics and Biophotonics: Saratov Fall Meeting 2019: Computations and Data Analysis: from Nanoscale Tools to Brain Functions (23–27 September 2019, Saratov, Russian Federation), v. 11459, SPIE, Bellingham, Washington, 2020, 114590D | DOI

[16] Hramov A. E., Grubov V., Badarin A., Maksimenko V. A., Pisarchik A. N., “Functional near-infrared spectroscopy for the classification of motor-related brain activity on the sensor-level”, Sensors, 20:8 (2020), 2362 | DOI

[17] Talamonti D., Montgomery C. A., Clark D. P. A., Bruno D., “Age-related prefrontal cortex activation in associative memory: An fNIRS pilot study”, NeuroImage, 222 (2020), 117223 | DOI

[18] Rahman M. A., Siddik A. B., Ghosh T. K., Khanam F., Ahmad M., “A narrative review on clinical applications of fNIRS”, Journal of Digital Imaging, 33:5 (2020), 1167–1184 | DOI

[19] Kurkin S., Badarin A., Grubov V., Maksimenko V., Hramov A., “The oxygen saturation in the primary motor cortex during a single hand movement: functional near-infrared spectroscopy (fNIRS) study”, The European Physical Journal Plus, 136:5 (2021), 548 | DOI

[20] Baker W. B., Parthasarathy A. B., Busch D. R., Mesquita R. C., Greenberg J. H., Yodh A. G., “Modified Beer-Lambert law for blood flow”, Biomedical Optics Express, 5:11 (2014), 4053–4075 | DOI

[21] Nippert A. R., Biesecker K. R., Newman E. A., “Mechanisms mediating functional hyperemia in the brain”, The Neuroscientist, 24:1 (2018), 73–83 | DOI

[22] Newton J. M., Sunderland A., Gowland P. A., “fMRI signal decreases in ipsilateral primary motor cortex during unilateral hand movements are related to duration and side of movement”, NeuroImage, 24:4 (2005), 1080–1087 | DOI

[23] Mullinger K. J., Mayhew S. D., Bagshaw A. P., Bowtell R., Francis S. T., “Evidence that the negative BOLD response is neuronal in origin: A simultaneous EEG–BOLD–CBF study in humans”, NeuroImage, 94 (2014), 263–274 | DOI

[24] Mayer A. R., Hanlon F. M., Shaff N. A., Stephenson D. D., Ling J. M., Dodd A. B., Hogeveen J., Quinn D. K., Ryman S. G., Pirio-Richardson S., “Evidence for asymmetric inhibitory activity during motor planning phases of sensorimotor synchronization”, Cortex, 129 (2020), 314–328 | DOI