Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVP_2022_30_1_a5, author = {P. {\CYRS}hholak and F. Tabari and A. N. Pisarchik}, title = {Revealing the neural network underlying covert picture-naming paradigm using magnetoencephalography}, journal = {Izvestiya VUZ. Applied Nonlinear Dynamics}, pages = {76--95}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a5/} }
TY - JOUR AU - P. Сhholak AU - F. Tabari AU - A. N. Pisarchik TI - Revealing the neural network underlying covert picture-naming paradigm using magnetoencephalography JO - Izvestiya VUZ. Applied Nonlinear Dynamics PY - 2022 SP - 76 EP - 95 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a5/ LA - en ID - IVP_2022_30_1_a5 ER -
%0 Journal Article %A P. Сhholak %A F. Tabari %A A. N. Pisarchik %T Revealing the neural network underlying covert picture-naming paradigm using magnetoencephalography %J Izvestiya VUZ. Applied Nonlinear Dynamics %D 2022 %P 76-95 %V 30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a5/ %G en %F IVP_2022_30_1_a5
P. Сhholak; F. Tabari; A. N. Pisarchik. Revealing the neural network underlying covert picture-naming paradigm using magnetoencephalography. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 1, pp. 76-95. http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a5/
[1] Quillian M., “Semantic memory”, Semantic Information Processing, eds. Minsky M., MIT Press, Cambridge, MA, 1968, 216–270
[2] Tulving E., “Episodic and semantic memory”, Organization of Memory, eds. Tulving E., Donaldson W., Academic Press, New York, 1972, 381–403
[3] Warrington E.K., “The selective impairment of semantic memory”, Q. J. Exp. Psychol, 27:4 (1975), 635–657 | DOI
[4] Nestor P.J., Fryer T.D., Hodges J.R., “Declarative memory impairments in Alzheimer's disease and semantic dementia”, NeuroImage, 30:3 (2006), 1010–1020 | DOI
[5] Burnstine T.H., Lesser R.P., Hart J., Uematsu S., Zinreich S.J., Krauss G.L., Fisher R.S., Vining E.P.G., Gordon B., “Characterization of the basal temporal language area in patients with left temporal lobe epilepsy”, Neurology, 40:6 (1990), 966–970 | DOI
[6] Lüders H., Lesser R.P., Hahn J., Dinner D.S., Morris H.H., Wyllie E., Godoy J., “Basal temporal language area”, Brain, 114:2 (1991), 743–754 | DOI
[7] Damasio H., Grabowski T.J., Tranel D., Hichwa R.D., Damasio A.R., “A neural basis for lexical retrieval”, Nature, 380:6574 (1996), 499–505 | DOI
[8] Noppeney U., Price C.J., “A PET study of stimulus- and task-induced semantic processing”, NeuroImage, 15:4 (2002), 927–935 | DOI
[9] Bright P., Moss H., Tyler L.K., “Unitary vs multiple semantics: PET studies of word and picture processing”, Brain Lang, 89:3 (2004), 417–432 | DOI
[10] Sharp D.J., Scott S.K., Wise R.J.S., “Retrieving meaning after temporal lobe infarction: The role of the basal language area”, Ann. Neurol, 56:6 (2004), 836–846 | DOI
[11] Spitsyna G., Warren J.E., Scott S.K., Turkheimer F.E., Wise R.J.S., “Converging language streams in the human temporal lobe”, J. Neurosci, 26:28 (2006), 7328–7336 | DOI
[12] Marinkovic K., Dhond R.P., Dale A.M., Glessner M., Carr V., Halgren E., “Spatiotemporal dynamics of modality-specific and supramodal word processing”, Neuron, 38:3 (2003), 487–497 | DOI
[13] Nobre A.C., Allison T., McCarthy G., “Word recognition in the human inferior temporal lobe”, Nature, 372:6503 (1994), 260–263 | DOI
[14] Liu H., Agam Y., Madsen J.R., Kreiman G., “Timing, timing, timing: Fast decoding of object information from intracranial field potentials in human visual cortex”, Neuron, 62:2 (2009), 281–290 | DOI
[15] Mesulam M.M., “From sensation to cognition”, Brain, 121:6 (1998), 1013–1052 | DOI
[16] Thompson-Schill S.L., “Neuroimaging studies of semantic memory: inferring “how” from “where””, Neuropsychologia, 41:3 (2003), 280–292 | DOI
[17] Catani M., Ffytche D.H., “The rises and falls of disconnection syndromes”, Brain, 128:10 (2005), 2224–2239 | DOI
[18] Martin A., “The representation of object concepts in the brain”, Annu. Rev. Psychol, 58 (2007), 25–45 | DOI
[19] Forseth K.J., Kadipasaoglu C.M., Conner C.R., Hickok G., Knight R.T., Tandon N., “A lexical semantic hub for heteromodal naming in middle fusiform gyrus”, Brain, 141:7 (2018), 2112–2126 | DOI
[20] Grill-Spector K., Kourtzi Z., Kanwisher N., “The lateral occipital complex and its role in object recognition”, Vis. Res., 41:10–11 (2001), 1409–1422 | DOI
[21] Indefrey P., Levelt W.J.M., “The spatial and temporal signatures of word production components”, Cognition, 92:1–2 (2004), 101–144 | DOI
[22] Ungerleider L.G., Mishkin M., “Two cortical visual systems”, Analysis of Visual Behavior, eds. Ingle DJ, Goodale MA, Mansfield RJW, MIT Press, Cambridge, 1982, 549–586
[23] Felleman D.J., Van Essen D.C., “Distributed hierarchical processing in the primate cerebral cortex”, Cereb. Cortex, 1:1 (1991), 1–47 | DOI
[24] Thompson-Shill S.L., D'Esposito M., Aguirre G.K., Farah M.J., “Role of left inferior prefrontal cortex in retrieval of semantic knowledge: A reevaluation”, Proc. Natl. Acad. Sci. U.S.A., 94:26 (1997), 14792–14797 | DOI
[25] Wagner A.D., Paré-Blagoev E.J., Clark J., Poldrack R.A., “Recovering meaning: Left prefrontal cortex guides controlled semantic retrieval”, Neuron, 31:2 (2001), 329–338 | DOI
[26] Hickok G., Poeppel D., “The cortical organization of speech processing”, Nat. Rev. Neurosci, 8:5 (2007), 393–402 | DOI
[27] Poldrack R.A., Wagner A.D., Prull M.W., Desmond J.E., Glover G.H., Gabrieli J.D.E., “Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex”, NeuroImage, 10:1 (1999), 15–35 | DOI
[28] Badre D., Poldrack R.A., Paré-Blagoev E.J., Insler R.Z., Wagner A.D., “Dissociable controlled retrieval and generalized selection mechanisms in ventrolateral prefrontal cortex”, Neuron, 47:6 (2005), 907–918 | DOI
[29] Bastos A.M., Vezoli J., Bosman C.A., Schoffelen J.M., Oostenveld R., Dowdall J.R., De Weerd P., Kennedy H., Fries P., “Visual areas exert feedforward and feedback influences through distinct frequency channels”, Neuron, 85:2 (2015), 390–401 | DOI
[30] Michalareas G., Vezoli J., van Pelt S., Schoffelen J.M., Kennedy H., Fries P., “Alpha-beta and gamma rhythms subserve feedback and feedforward influences among human visual cortical areas”, Neuron, 89:2 (2016), 384–397 | DOI
[31] Lazar R.M., Mohr J.P., “Revisiting the contributions of Paul Broca to the study of aphasia”, Neuropsychol. Rev., 21:3 (2011), 236–239 | DOI
[32] Trupe L.A., Varma D.D., Gomez Y., Race D., Leigh R., Hillis A.E., Gottesman R.F., “Chronic apraxia of speech and Broca's area”, Stroke, 44:3 (2013), 740–744 | DOI
[33] Flinker A., Korzeniewska A., Shestyuk A.Y., Franaszczuk P.J., Dronkers N.F., Knight R.T., Crone N.E., “Redefining the role of Broca’s area in speech”, Proc. Natl. Acad. Sci. U.S.A., 112:9 (2015), 2871–2875 | DOI
[34] Chao L.L., Martin A., “Representation of manipulable man-made objects in the dorsal stream”, NeuroImage, 12:4 (2000), 478–484 | DOI
[35] Binder J.R., Desai R.H., “The neurobiology of semantic memory”, Trends Cogn. Sci., 15:11 (2011), 527–536 | DOI
[36] Conner C.R., Chen G., Pieters T.A., Tandon N., “Category specific spatial dissociations of parallel processes underlying visual naming”, Cereb. Cortex, 24:10 (2014), 2741–2750 | DOI
[37] Binney R.J., Embleton K.V., Jefferies E., Parker G.J., Lambon Ralph M.A., “The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: Evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia”, Cereb. Cortex, 20:11 (2010), 2728–2738 | DOI
[38] Mion M., Patterson K., Acosta-Cabronero J., Pengas G., Izquierdo-Garcia D., Hong Y.T., Fryer T.D., Williams G.B., Hodges J.R., Nestor P.J., “What the left and right anterior fusiform gyri tell us about semantic memory”, Brain, 133:11 (2010), 3256–3268 | DOI
[39] Noppeney U., Phillips J., Price C., “The neural areas that control the retrieval and selection of semantics”, Neuropsychologia, 42:9 (2004), 1269–1280 | DOI
[40] Binder J.R., “The Wernicke area: Modern evidence and a reinterpretation”, Neurology, 85:24 (2015), 2170–2175 | DOI
[41] Drane D.L., Loring D.W., Voets N.L., Price M., Ojemann J.G., Willie J.T., Saindane A.M., Phatak V., Ivanisevic M., Millis S., Helmers S.L., Miller J.M., Meador K.J., Gross R.E., “Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy”, Epilepsia, 56:1 (2015), 101–113 | DOI
[42] Hoppe C., Witt J.A., Helmstaedter C., Gasser T., Vatter H., Elger C.E., “Laser interstitial thermotherapy (LiTT) in epilepsy surgery”, Seizure, 48 (2017), 45–52 | DOI
[43] Oldfield R.C., “The assessment and analysis of handedness: The Edinburgh inventory”, Neuropsychologia, 9:1 (1971), 97–113 | DOI
[44] Genesee F., “Second language learning through immersion: A review of U.S. programs”, Rev. Educ. Res., 55:4 (1985), 541–561 | DOI
[45] Gramfort A., Luessi M., Larson E., Engemann D.A., Strohmeier D., Brodbeck C., Parkkonen L., Hämäläinen M.S., “MNE software for processing MEG and EEG data”, NeuroImage, 86 (2014), 446–460 | DOI
[46] Peirce J.W., “PsychoPy–Psychophysics software in Python”, J. Neurosci. Methods, 162:1–2 (2007), 8–13 | DOI
[47] Niso G., Gorgolewski K.J., Bock E., Brooks T.L., Flandin G., Gramfort A., Henson R.N., Jas M., Litvak V., Moreau J.T., Oostenveld R., Schoffelen J.M., Tadel F., Wexler J., Baillet S., “MEG-BIDS, the brain imaging data structure extended to magnetoencephalography”, Sci. Data, 5:1 (2018), 180110 | DOI
[48] Fischl B., “FreeSurfer”, NeuroImage, 62:2 (2012), 774–781 | DOI
[49] Dale A.M., Liu A.K., Fischl B.R., Buckner R.L., Belliveau J.W., Lewine J.D., Halgren E., “Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity”, Neuron, 26:1 (2000), 55–67 | DOI
[50] Grill-Spector K., Kushnir T., Hendler T., Edelman S., Itzchak Y., Malach R., “A sequence of object-processing stages revealed by fMRI in the human occipital lobe”, Hum. Brain Mapp., 6:4 (1998), 316–328 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[51] Grill-Spector K., Kushnir T., Edelman S., Itzchak Y., Malach R., “Cue-invariant activation in object-related areas of the human occipital lobe”, Neuron, 21:1 (1998), 191–202 | DOI
[52] Murtha S., Chertkow H., Beauregard M., Evans A., “The neural substrate of picture naming”, J. Cogn. Neurosci., 11:4 (1999), 399–423 | DOI
[53] Kourtzi Z., Kanwisher N., “Cortical regions involved in perceiving object shape”, J. Neurosci., 20:9 (2000), 3310–3318 | DOI
[54] Doniger G.M., Foxe J.J., Murray M.M., Higgins B.A., Snodgrass J.G., Schroeder C.E., Javitt D.C., “Activation timecourse of ventral visual stream object-recognition areas: High density electrical mapping of perceptual closure processes”, J. Cogn. Neurosci., 12:4 (2000), 615–621 | DOI
[55] Allison T., Ginter H., McCarthy G., Nobre A.C., Puce A., Luby M., Spencer D.D., “Face recognition in human extrastriate cortex”, J. Neurophysiol., 71:2 (1994), 821–825 | DOI
[56] Allison T., Puce A., Spencer D.D., McCarthy G., “Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli”, Cereb. Cortex, 9:5 (1999), 415–430 | DOI
[57] McCarthy G., Puce A., Belger A., Allison T., “Electrophysiological studies of human face perception. II: Response properties of face-specific potentials generated in occipitotemporal cortex”, Cereb. Cortex, 9:5 (1999), 431–444 | DOI
[58] Puce A., Allison T., McCarthy G., “Electrophysiological studies of human face perception. III: Effects of top-down processing on face-specific potentials”, Cereb. Cortex, 9:5 (1999), 445–458 | DOI