New Lagrangian view of vorticity evolution in two-dimensional flows of liquid and gas
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 1, pp. 30-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

Purpose of the study is to obtain formulas for such a speed of imaginary particles that the circulation of the speed of a (real) fluid along any circuit consisting of these imaginary particles changes (in the process of motion of imaginary particles) according to a given time law. (Until now, only those speeds of imaginary particles were known, at which the mentioned circulation during the motion remained unchanged). Method. Without implementation of asymptotic, numerical and other approximate methods, a rigorous analysis of the dynamic equation of motion (flow) of any continuous fluid medium, from an ideal liquid to a viscous gas, is carried out. Plane-parallel and nonswirling axisymmetric flows are considered. The concept of motion of imaginary particles is used, based on the K. Zoravsky criterion (which is also called A. A. Fridman's theorem). Results. Formulas for the speed of imaginary particles are proposed. These formulas include the parameters of the (real) flow, their spatial derivatives and the function of time, which determines the law of the change in time of the (real fluid) velocity circulation along the contours moving together with the imaginary particles. In addition, it turned out that for a given function of time (and, as a consequence, for a given law of change in circulation with respect to time), the speed of imaginary particles is determined ambiguously. As a result, a method is proposed to change the speed and direction of motion of imaginary particles in a certain range (while maintaining the selected law of changes in circulation in time). For a viscous incompressible fluid, formulas are proposed that do not include pressure and its derivatives. Conclusion. A new Lagrangian point of view on the vorticity evolution in two-dimensional flows of fluids of all types is proposed. Formulas are obtained for the velocity of such movement of contours, at which the real fluid velocity circulation along any contour changes according to a given time law. This theoretical result can be used in computational fluid dynamics to limit the number of domains when using a gridless method for calculating flows of a viscous incompressible fluid (the method of viscous vortex domains).
Keywords: velocity of contours motion, circulation of velocity, velocity of imaginary particles, Zoravsky criterion, Friedmann's theorem, method of viscous vortex domains.
@article{IVP_2022_30_1_a2,
     author = {G. B. Sizykh},
     title = {New {Lagrangian} view of vorticity evolution in two-dimensional flows of liquid and gas},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {30--36},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a2/}
}
TY  - JOUR
AU  - G. B. Sizykh
TI  - New Lagrangian view of vorticity evolution in two-dimensional flows of liquid and gas
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 30
EP  - 36
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a2/
LA  - ru
ID  - IVP_2022_30_1_a2
ER  - 
%0 Journal Article
%A G. B. Sizykh
%T New Lagrangian view of vorticity evolution in two-dimensional flows of liquid and gas
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 30-36
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a2/
%G ru
%F IVP_2022_30_1_a2
G. B. Sizykh. New Lagrangian view of vorticity evolution in two-dimensional flows of liquid and gas. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 1, pp. 30-36. http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a2/

[1] Rosenhead L., “The formation of vortices from a surface of discontinuity”, Proc. R. Soc. Lond. A, 134:823 (1931), 170–192 | DOI

[2] Belotserkovskii S. M., Nisht M. I., Otryvnoe i bezotryvnoe obtekanie tonkikh krylev idealnoi zhidkostyu, Nauka, M., 1978, 352 pp.

[3] Cottet G.-H., Koumoutsakos P. D., Vortex Methods: Theory and Practice, Cambridge University Press, Cambridge, 2000, 320 pp. | DOI

[4] Golubkin V. N., Sizykh G. B., “O nekotorykh obschikh svoistvakh ploskoparallelnykh techenii vyazkoi zhidkosti”, Izvestiya AN SSSR. MZhG, 1987, no. 3, 176–178

[5] Brutyan M. A., Golubkin V. N., Krapivskii P. L., “Ob uravnenii Bernulli dlya osesimmetrichnykh techenii vyazkoi zhidkosti”, Uchenye zapiski TsAGI, 19:2 (1988), 98–100

[6] Dynnikova G. Ya., “Lagranzhev podkhod k resheniyu nestatsionarnykh uravnenii Nave–Stoksa”, Doklady Akademii nauk, 399:1 (2004), 42–46

[7] Markov V. V., Sizykh G. B., “Evolyutsiya zavikhrennosti v zhidkosti i gaze”, Izvestiya RAN. MZhG, 2015, no. 2, 8–15

[8] Dynnikova G. Y., Dynnikov Y. A., Guvernyuk S. V., Malakhova T. V., “Stability of a reverse Karman vortex street”, Physics of Fluids, 33:2 (2021), 024102 | DOI

[9] Kuzmina K., Marchevsky I., Soldatova I., Izmailova Y., “On the scope of Lagrangian vortex methods for two-dimensional flow simulations and the POD technique application for data storing and analyzing”, Entropy, 23:1 (2021), 118 | DOI

[10] Leonova D., Marchevsky I., Ryatina E., “Fast methods for vortex influence computation in meshless Lagrangian vortex methods for 2D incompressible flows simulation”, WIT Transactions on Engineering Sciences, 126 (2019), 255–267 | DOI

[11] Sizykh G. B., “Znachenie entropii na poverkhnosti nesimmetrichnoi vypukloi golovnoi chasti pri sverkhzvukovom obtekanii”, Prikladnaya matematika i mekhanika, 83:3 (2019), 377–383 | DOI

[12] Sizykh G. B., “Zamknutye vikhrevye linii v zhidkosti i gaze”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta Seriya «Fiziko-matematicheskie nauki», 23:3 (2019), 407–416 | DOI

[13] Mironyuk I. Yu., Usov L. A., “Invariant linii tormozheniya pri statsionarnom obtekanii tela zavikhrennym potokom idealnoi neszhimaemoi zhidkosti”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta Seriya «Fiziko-matematicheskie nauki», 24:4 (2020), 780–789 | DOI

[14] Kotsur O. S., “O suschestvovanii lokalnykh sposobov vychisleniya skorosti perenosa vikhrevykh trubok s sokhraneniem ikh intensivnosti”, Trudy MFTI, 11:1 (2019), 76–85

[15] Mironyuk I. Yu., Usov L. A., “Tochki tormozheniya na vikhrevykh liniyakh v techeniyakh idealnogo gaza”, Trudy MFTI, 12:4 (2020), 171–176 | DOI

[16] Sizykh G. B., “O kollinearnosti zavikhrennosti i skorosti za otoshedshim skachkom uplotneniya”, Trudy MFTI, 13:3 (2021), 144–147 | DOI

[17] Sizykh G. B., “Vtoroe integralnoe obobschenie invarianta Krokko dlya 3D-techenii za otoshedshim golovnym skachkom”, Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta Seriya «Fiziko-matematicheskie nauki», 25:3 (2021), 588–595 | DOI

[18] Prim R., Truesdell C., “A derivation of Zorawski’s criterion for permanent vector-lines”, Proc. Amer. Math. Soc, 1 (1950), 32–34

[19] Truesdell C., The Kinematics of Vorticity, Indiana University Press, Bloomington, 1954, 232 pp.

[20] Fridman A. A., Opyt gidromekhaniki szhimaemoi zhidkosti, ONTI, M., 1934, 370 pp.