Generalized Rabinovich-Fabrikant system: equations and its dynamics
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 1, pp. 7-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of this work is to numerically study of the generalized Rabinovich-Fabrikant model. This model is obtained using the Lagrange formalism and describing the three-mode interaction in the presence of a general cubic nonlinearity. The model demonstrates very rich dynamics due to the presence of third-order nonlinearity in the equations. Methods. The study is based on the numerical solution of the obtained analytically differential equations, and their numerical bifurcation analysis using the MаtCont program. Results. For the generalized model we present a charts of dynamic regimes in the control parameter plane, Lyapunov exponents depending on parameters, portraits of attractors and their basins. On the plane of control parameters, bifurcation lines and points are numerically found. They are plotted for equilibrium point and period one limit cycle. It is shown that the dynamics of the generalized model depends on the signature of the characteristic expressions presented in the equations. A comparison with the dynamics of the Rabinovich-Fabrikant model is carried out. We indicated a region in the parameter plane in which there is a complete or partial coincidence of dynamics. Conclusion. The generalized model is new and describes the interaction of three modes, in the case when the cubic nonlinearity that determines their interaction is given in a general form. In addition, since the considered model is a certain natural extension of the well-known Rabinovich-Fabrikant model, then it is universal. And it can simulate systems of various physical nature (including radio engineering), in which there is a three-mode interaction and there is a general cubic nonlinearity.
Keywords: Rabinovich-Fabrikant model, chaotic attractors, Lagrange formalism, bifurcation analysis, multistability.
@article{IVP_2022_30_1_a1,
     author = {S. P. Kuznetsov and L. V. Turukina},
     title = {Generalized {Rabinovich-Fabrikant} system: equations and its dynamics},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {7--29},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a1/}
}
TY  - JOUR
AU  - S. P. Kuznetsov
AU  - L. V. Turukina
TI  - Generalized Rabinovich-Fabrikant system: equations and its dynamics
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2022
SP  - 7
EP  - 29
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a1/
LA  - ru
ID  - IVP_2022_30_1_a1
ER  - 
%0 Journal Article
%A S. P. Kuznetsov
%A L. V. Turukina
%T Generalized Rabinovich-Fabrikant system: equations and its dynamics
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2022
%P 7-29
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a1/
%G ru
%F IVP_2022_30_1_a1
S. P. Kuznetsov; L. V. Turukina. Generalized Rabinovich-Fabrikant system: equations and its dynamics. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 30 (2022) no. 1, pp. 7-29. http://geodesic.mathdoc.fr/item/IVP_2022_30_1_a1/

[1] Kuznetsov S. P., Dinamicheskii khaos, Fizmatlit, M., 2006, 356 pp.

[2] Ott E., Chaos in Dynamical Systems, Cambridge University Press, Cambridge, 1993, 385 pp.

[3] Gukenkheimer Dzh., Kholms P., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, M.-Izhevsk, 2002, 561 pp.

[4] Anischenko V. S., Vadivasova T. E., Astakhov V. V., Nelineinaya dinamika khaoticheskikh i stokhasticheskikh sistem, Izd-vo Sarat. un-ta, Saratov, 1999, 367 pp.

[5] Shuster G., Determinirovannyi khaos, Mir, M., 1988, 240 pp.

[6] Kuznetsov S. P., Dinamicheskii khaos i giperbolicheskie attraktory: ot matematiki k fizike, Institut kompyuternykh issledovanii, M.-Izhevsk, 2013, 488 pp.

[7] Neimark Yu. I., Landa P. S., Stokhasticheskie i khaoticheskie kolebaniya, Nauka, M., 1987, 424 pp.

[8] Lorenz E. N., The Essence of Chaos, University of Washington Press, Seattle, WA, USA, 1995, 240 pp.

[9] Alligood K. T., Sauer T., Yorke J., Chaos: An Introduction to Dynamical Systems, Springer-Verlag, New York, 1996, 603 pp. | DOI

[10] Hilborn R. C., Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, Oxford University Press, Oxford, 2001, 672 pp.

[11] Rabinovich M. I., Fabrikant A. L., “Stokhasticheskaya avtomodulyatsiya voln v neravnovesnykh sredakh”, Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 77:2 (1979), 617–629

[12] Danca M.-F., Feckan M., Kuznetsov N., Chen G., “Looking more closely to the Rabinovich\hspace{1pt}–\hspace{1pt}Fabrikant system”, International Journal of Bifurcation and Chaos, 26:2 (2016), 1650038 | DOI

[13] Liu Y., Yang Q., Pang G., “A hyperchaotic system from the Rabinovich system”, Journal of Computational and Applied Mathematics, 234:1 (2010), 101–113 | DOI

[14] Agrawal S. K., Srivastava M., Das S., “Synchronization between fractional-order Rabinovich\hspace{1pt}–\hspace{1pt}Fabrikant and Lotka\hspace{1pt}–\hspace{1pt}Volterra systems”, Nonlinear Dynamics, 69:4 (2012), 2277–2288 | DOI

[15] Srivastava M., Agrawal S. K., Vishal K., Das S., “Chaos control of fractional order Rabinovich–\hspace{1pt}Fabrikant system and synchronization between chaotic and chaos controlled fractional order Rabinovich\hspace{1pt}–\hspace{1pt}Fabrikant system”, Applied Mathematical Modelling, 38:13 (2014), 3361–3372 | DOI

[16] Danca M.-F., “Hidden transient chaotic attractors of Rabinovich\hspace{1pt}–\hspace{1pt}Fabrikant system”, Nonlinear Dynamics, 86:2 (2016), 1263–1270 | DOI

[17] Danca M.-F., Kuznetsov N., Chen G., “Unusual dynamics and hidden attractors of the Rabinovich\hspace{1pt}–\hspace{1pt}Fabrikant system”, Nonlinear Dynamics, 88:1 (2017), 791–805 | DOI

[18] Danca M.-F., Chen G., “Bifurcation and chaos in a complex model of dissipative medium”, International Journal of Bifurcation and Chaos, 14:10 (2004), 3409–3447 | DOI

[19] Luo X., Small M., Danca M.-F., Chen G., “On a dynamical system with multiple chaotic attractors”, International Journal of Bifurcation and Chaos, 17:9 (2007), 3235–3251 | DOI

[20] Kuznetsov A. P., Kuznetsov S. P., Tyuryukina L. V., “Slozhnaya dinamika i khaos v modelnoi sisteme Rabinovicha\hspace{1pt}–\hspace{1pt}Fabrikanta”, Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya Fizika, 19:1 (2019), 4–18 | DOI

[21] Hocking L. M., Stewartson K., “On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance”, Proc. R. Soc. Lond. A, 326:1566 (1972), 289–313 | DOI

[22] Andronov A. A., Fabrikant A. L., “Zatukhanie Landau, vetrovye volny i svistok”, Nelineinye volny, Nauka, M., 1979, 68–104

[23] Kuramoto Y., Yamada T., “Turbulent state in chemical reactions”, Progress of Theoretical Physics, 56:2 (1976), 679–681 | DOI