Impact of time delay on the dynamics of optical parametric oscillator with intra-cavity pumping by semiconductor disk laser
Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 27 (2019) no. 3, pp. 61-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theme. The dynamics of a nonlinear numerical model of a nonlinear optical interaction in the semiconductor disk laser resonator under influence of the time delay is investigated. The conditions of self-excitation, stationary generation modes and their stability are studied. Methods. The analysis of stationary generation stability was performed with DDE-Biftool package. Analysis of higher dimensional regimes was performed using numerical integration, construction of phase portraits, spectra and calculation of Lyapunov exponents. Results. A numerical simulation of the dynamics in the region of steady state instability shown, that the instability is quasi-harmonic only in the vicinity of Andronov–Hopf bifurcation, and quickly turns into quasi-periodic instability with variation of control parameters. Transient dynamics is studied. Discussion. The results can be used for optimization of laser generator parameters in high resolution spectroscopy devices.
Keywords: optical parametric oscillator, semiconductor disk laser, nonlinear optical interaction, time delayed systems.
@article{IVP_2019_27_3_a3,
     author = {L. A. Kochkurov and M. I. Balakin and P. V. Kuptsov and Yu. A. Morozov},
     title = {Impact of time delay on the dynamics of optical parametric oscillator with intra-cavity pumping by semiconductor disk laser},
     journal = {Izvestiya VUZ. Applied Nonlinear Dynamics},
     pages = {61--72},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVP_2019_27_3_a3/}
}
TY  - JOUR
AU  - L. A. Kochkurov
AU  - M. I. Balakin
AU  - P. V. Kuptsov
AU  - Yu. A. Morozov
TI  - Impact of time delay on the dynamics of optical parametric oscillator with intra-cavity pumping by semiconductor disk laser
JO  - Izvestiya VUZ. Applied Nonlinear Dynamics
PY  - 2019
SP  - 61
EP  - 72
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVP_2019_27_3_a3/
LA  - ru
ID  - IVP_2019_27_3_a3
ER  - 
%0 Journal Article
%A L. A. Kochkurov
%A M. I. Balakin
%A P. V. Kuptsov
%A Yu. A. Morozov
%T Impact of time delay on the dynamics of optical parametric oscillator with intra-cavity pumping by semiconductor disk laser
%J Izvestiya VUZ. Applied Nonlinear Dynamics
%D 2019
%P 61-72
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVP_2019_27_3_a3/
%G ru
%F IVP_2019_27_3_a3
L. A. Kochkurov; M. I. Balakin; P. V. Kuptsov; Yu. A. Morozov. Impact of time delay on the dynamics of optical parametric oscillator with intra-cavity pumping by semiconductor disk laser. Izvestiya VUZ. Applied Nonlinear Dynamics, Tome 27 (2019) no. 3, pp. 61-72. http://geodesic.mathdoc.fr/item/IVP_2019_27_3_a3/

[1] Sorokina I.T., Vodopyanov K.L., eds., Solid-State Mid-Infrared Laser Sources, Topics in Applied Physics, 89, Springer-Verlag, 2003, 558 pp.

[2] Morozov Y.A., Morozov M.Y., Kozlovsky V.I., Okhotnikov O.G., “Compact intracavity singly-resonant optical parametric oscillator pumped by {GaSb}-based vertical external cavity surface-emitting laser: {C}oncept and the main operational characteristics”, IEEE J. of Selected Topics in Quantum Electron., 21:1 (2015), 1603105-1–1603105-5

[3] Morozov Y.A., “Multi-mode dynamics of optical oscilators based on intracavity nonlinear frequency down-conversion”, Appl. Phys B, 124:1 (2018), 12-1–12-7

[4] Stothard D.J.M., Hopkins J.-M., Burns D., Dunn M.H., “Stable, continuous-wave, intracavity, optical parametric oscillator pumped by a semiconductor disk laser (VECSEL)”, Optics Express, 17:13 (2009), 10648–10658

[5] Siegman A.E., Lasers, University Science Book, California, 1986

[6] Oshman M.K. and Harris S.E., “Theory of optical parametric oscillation internal to the laser cavity”, IEEE J. Quantum Electron., QE-4:8 (1968), 491–502

[7] Hodges S.E., Munroe M., Cooper J., Raymer M.G., “Multimode laser model with coupled cavities and quantum noise”, JOSA B, 14:1 (1997), 191–199

[8] Turnbull G.A., Dunn M.H., Ebrahimzadeh M., “Continuous-wave, intracavity optical parametric oscillators: an analysis of power characteristics”, Appl. Phys B, 66 (1998), 701–710

[9] Morozov Y.A., “Transient power characteristics of a compact singly resonant intracavity optical parametric oscillator pumped by a semiconductor disk laser”, JOSA B, 33:7 (2016), 1470–1475

[10] Park J.-D., Seo D.-S., McInerney J., “Self-pulsations in strongly coupled asymmetric external cavity semiconductor lasers”, IEEE J. Quantum Electron., 1990, no. 26, 1353–1362

[11] Hui R.-Q., Tao S.-P., “Improved rate equations for external cavity semiconductor lasers”, IEEE J. Quantum Electron., 25 (1989), 1580–1584

[12] van Tartwijk G.H. M., Lenstra D., “Semiconductor laser with optical injection and feedback”, Quantum Semiclass. Opt., 7 (1995), 87–143

[13] Morozov Y.A., Leinonen T., Härkönen A., Pessa M., “Simultaneous dual-wavelength emission from vertical external-cavity surface-emitting laser: A numerical modeling”, IEEE J. Quantum Electron., 42 (2006), 1055–1061

[14] Lang R., Kobayashi K., “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron., 16 (1980), 347–355

[15] Morozov Yu.A., Balakin M.I., Kochkurov L.A., Morozov M.Yu., “Generator raznostnoi chastoty i opticheskii parametricheskii generator s vnutrirezonatornoi nakachkoi poluprovodnikovym diskovym lazerom: Sopostavitelnyi analiz v modeli s zapazdyvaniem”, Izv. Sarat. un-ta. Nov. ser. Ser. Fizika, 19:1 (2019), 34–42

[16] Calvez S., Burns D., Dawson M.D., “Optimization of an optically pumped {1.3}-$\mu$m {GaInNAs} vertical-cavity surface-emitting laser”, IEEE Phot. Techn. Lett., 14:2 (2002), 131–133

[17] Tropper A.C., Hoogland S., “Extended cavity surface-emitting semiconductor lasers”, Prog. Quantum Electronics, 30 (2006), 1–43

[18] Engelborghs K., Luzyanina T., Samaey G., DDE-BIFTOOL. v.2.00 user manual: a Matlab package for bifurcation analysis of delay differential equations, Technical Report TW-330, Katholieke Universiteit Leuven, Leuven, Belgium, 2001

[19] Benettin G., Galgani L., Giorgilli A., Strelcyn J.-M., “Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part 1: Theory”, Meccanica, 15:1 (1980), 9–20

[20] Shimada I., Nagashima T., “A numerical approach to ergodic problem of dissipative dynamical systems”, Prog. Theor. Phys., 61:6 (1979), 1605–1616

[21] Kuptsov P., Parlitz U., “Theory and computation of covariant Lyapunov vectors”, Journal of Nonlinear Science, 22:5 (2012), 727–762

[22] Kuptsov P.V., “Vychislenie pokazatelei Lyapunova dlya raspredelennykh sistem: Preimuschestva i nedostatki razlichnykh chislennykh metodov”, Izv. vuzov. Prikladnaya nelineinaya dinamika, 18:5 (2010), 93–112

[23] Kuptsov P.V., Kuznetsov S.P., “Numerical test for hyperbolicity of chaotic dynamics in time-delay systems”, Phys. Rev. E, 94 (2016), 010201(R)

[24] Kuptsov P.V., Kuznetsov S.P., “Numerical test for hyperbolicity in chaotic systems with multiple time delays”, Communications in Nonlinear Science and Numerical Simulation, 56 (2018), 227–239