Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 45-57
Voir la notice de l'article provenant de la source Math-Net.Ru
The second initial-boundary value problem in a bounded domain for a fractional-diffusion equation with the Bessel operator and the Gerasimov-Caputo derivative is investigated. Theorems of existence and uniqueness of the solution of the inverse problem of determining the lowest coefficient in a one-dimensional fractional diffusion equation under the condition of integral observation are obtained. The Schauder principle was used to prove the existence of the solution.
Keywords:
Inverse problem, Fourier-Bessel series, eigenvalue, eigenvalue function, uniqueness, Schauder fixed-point theorem.
@article{IVM_2023_9_a3,
author = {D. I. Akramova},
title = {Inverse coefficient problem for a fractional-diffusion equation with a {Bessel} operator},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {45--57},
publisher = {mathdoc},
number = {9},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/}
}
TY - JOUR AU - D. I. Akramova TI - Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 45 EP - 57 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/ LA - ru ID - IVM_2023_9_a3 ER -
D. I. Akramova. Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 45-57. http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/