Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The second initial-boundary value problem in a bounded domain for a fractional-diffusion equation with the Bessel operator and the Gerasimov-Caputo derivative is investigated. Theorems of existence and uniqueness of the solution of the inverse problem of determining the lowest coefficient in a one-dimensional fractional diffusion equation under the condition of integral observation are obtained. The Schauder principle was used to prove the existence of the solution.
Keywords: Inverse problem, Fourier-Bessel series, eigenvalue, eigenvalue function, uniqueness, Schauder fixed-point theorem.
@article{IVM_2023_9_a3,
     author = {D. I. Akramova},
     title = {Inverse coefficient problem for a fractional-diffusion equation with a {Bessel} operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--57},
     publisher = {mathdoc},
     number = {9},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/}
}
TY  - JOUR
AU  - D. I. Akramova
TI  - Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 45
EP  - 57
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/
LA  - ru
ID  - IVM_2023_9_a3
ER  - 
%0 Journal Article
%A D. I. Akramova
%T Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 45-57
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/
%G ru
%F IVM_2023_9_a3
D. I. Akramova. Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 45-57. http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/

[1] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR | Zbl

[2] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[3] Pskhu A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[4] Isakov V., Inverse problems for partial differential equations, Appl. Math. Sci., 127, Second edition, Springer, New York, 2006 | MR | Zbl

[5] Agarwal P., Karimov E., Mamchuev M., Ruzhansky M., “On Boundary-value problems for a partial differential equation with Caputo and Bessel operators”, Appl. Numer. Harmonic. Anal., 2 (2017), 707–718 | DOI | MR | Zbl

[6] Al-Musalhi F., Al-Salti N., Karimov E., “Initial boundary value problems for a fractional differential equation with hyper-Bessel operator”, Fract. Calculus Appl. Anal., 21:1 (2018), 200–219 | DOI | MR | Zbl

[7] Khushtova F.G., “Pervaya kraevaya zadacha v polupolose dlya uravneniya parabolicheskogo tipa s operatorom Besselya i proizvodnoi Rimana–Liuvillya”, Matem. zametki, 99:6 (2016), 921–928 | DOI | MR | Zbl

[8] Khushtova F.G., “Vtoraya kraevaya zadacha v polupolose dlya uravneniya parabolicheskogo tipa s operatorom Besselya i proizvodnoi Rimana–Liuvillya”, Izv. vuzov. Matem., 2017, no. 7, 84–93 | MR | Zbl

[9] Durdiev D.K., Rahmonov A.A., Bozorov Z.R., “A two-dimensional diffusion coefficient determination problem for the time-fractional equation”, Math. Meth. Appl. Sci., 44:3 (2021), 10753–10761 | DOI | MR | Zbl

[10] Subhonova Z.A., Rahmonov A.A., “Problem of determining the time dependent coefficient in the fractional diffusion-wave equation”, Lobachevskii J. Math., 42:15 (2021), 3747–3760 | DOI | MR | Zbl

[11] Durdiev D.K., Turdiev Kh.X, “Obratnaya zadacha dlya giperbolicheskoi sistemy pervogo poryadka s pamyatyu”, Differents. uravneniya, 56:12 (2020), 1666–1675 | DOI | Zbl

[12] Durdiev D.K., Jumaev J.J., “Memory kernel reconstruction problems in the integro–differential equation of rigid heat conductor”, Math. Meth. Appl. Sci., 45:14 (2022), 8374–8388 | DOI | MR

[13] Durdiev D.K., Rakhmonov A.A., “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii SH-voln v vyazkouprugoi poristoi srede: globalnaya razreshimost”, TMF, 195:3 (2018), 491–506 | DOI | MR | Zbl

[14] Durdiev D.K., “Inverse coefficient problem for the time-fractional diffusion equation”, Eurasian J. Math. Comput. Appl., 9:1 (2022), 44–54 | MR

[15] Alimov Sh.A., Komilov N.M., “Ob opredelenii parametrov, zadayuschikh teplovoi rezhim, po vykhodnym dannym”, Differents. uravneniya, 58:1 (2022), 23–36 | DOI | MR | Zbl

[16] Durdiev U.D., “Zadacha ob opredelenii koeffitsienta reaktsii v drobnom uravnenii diffuzii”, Differents. uravneniya, 57:9 (2021), 1220–1229 | DOI | MR | Zbl

[17] Durdiev U.D., “Obratnaya zadacha po opredeleniyu neizvestnogo koeffitsienta v uravnenii kolebaniya balki”, Differents. uravneniya, 58:1 (2022), 37–44 | DOI | MR | Zbl

[18] Kamynin V.L., “Obratnaya zadacha opredeleniya mladshego koeffitsienta v parabolicheskom uravnenii pri uslovii integralnogo nablyudeniya”, Matem. zametki \, 94:2 (2013), 207–217 \ | DOI | Zbl

[19] Wei T., Wang J., “A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation”, Appl. Numer. Math., 78 (2014), 95–111 | DOI | MR | Zbl

[20] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math., 840, Berlin, Germany, 1981 | DOI | MR | Zbl

[21] Tolstov G.P., Ryady Fure, 3-e izd., Nauka, M., 1980 | MR

[22] Olver F., Teoriya besselevykh funktsii, v. 1, In. lit., M., 1949

[23] Vatson G.N., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978

[24] Trenogin V.A., Funktsionalnyi analiz, Nauka, M., 1980 | MR