Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 45-57

Voir la notice de l'article provenant de la source Math-Net.Ru

The second initial-boundary value problem in a bounded domain for a fractional-diffusion equation with the Bessel operator and the Gerasimov-Caputo derivative is investigated. Theorems of existence and uniqueness of the solution of the inverse problem of determining the lowest coefficient in a one-dimensional fractional diffusion equation under the condition of integral observation are obtained. The Schauder principle was used to prove the existence of the solution.
Keywords: Inverse problem, Fourier-Bessel series, eigenvalue, eigenvalue function, uniqueness, Schauder fixed-point theorem.
@article{IVM_2023_9_a3,
     author = {D. I. Akramova},
     title = {Inverse coefficient problem for a fractional-diffusion equation with a {Bessel} operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--57},
     publisher = {mathdoc},
     number = {9},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/}
}
TY  - JOUR
AU  - D. I. Akramova
TI  - Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 45
EP  - 57
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/
LA  - ru
ID  - IVM_2023_9_a3
ER  - 
%0 Journal Article
%A D. I. Akramova
%T Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 45-57
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/
%G ru
%F IVM_2023_9_a3
D. I. Akramova. Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 45-57. http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/