Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_9_a3, author = {D. I. Akramova}, title = {Inverse coefficient problem for a fractional-diffusion equation with a {Bessel} operator}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {45--57}, publisher = {mathdoc}, number = {9}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/} }
TY - JOUR AU - D. I. Akramova TI - Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 45 EP - 57 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/ LA - ru ID - IVM_2023_9_a3 ER -
D. I. Akramova. Inverse coefficient problem for a fractional-diffusion equation with a Bessel operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 45-57. http://geodesic.mathdoc.fr/item/IVM_2023_9_a3/
[1] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, North-Holland Math. Stud., 204, Elsevier, Amsterdam, 2006 | MR | Zbl
[2] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003
[3] Pskhu A.V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005
[4] Isakov V., Inverse problems for partial differential equations, Appl. Math. Sci., 127, Second edition, Springer, New York, 2006 | MR | Zbl
[5] Agarwal P., Karimov E., Mamchuev M., Ruzhansky M., “On Boundary-value problems for a partial differential equation with Caputo and Bessel operators”, Appl. Numer. Harmonic. Anal., 2 (2017), 707–718 | DOI | MR | Zbl
[6] Al-Musalhi F., Al-Salti N., Karimov E., “Initial boundary value problems for a fractional differential equation with hyper-Bessel operator”, Fract. Calculus Appl. Anal., 21:1 (2018), 200–219 | DOI | MR | Zbl
[7] Khushtova F.G., “Pervaya kraevaya zadacha v polupolose dlya uravneniya parabolicheskogo tipa s operatorom Besselya i proizvodnoi Rimana–Liuvillya”, Matem. zametki, 99:6 (2016), 921–928 | DOI | MR | Zbl
[8] Khushtova F.G., “Vtoraya kraevaya zadacha v polupolose dlya uravneniya parabolicheskogo tipa s operatorom Besselya i proizvodnoi Rimana–Liuvillya”, Izv. vuzov. Matem., 2017, no. 7, 84–93 | MR | Zbl
[9] Durdiev D.K., Rahmonov A.A., Bozorov Z.R., “A two-dimensional diffusion coefficient determination problem for the time-fractional equation”, Math. Meth. Appl. Sci., 44:3 (2021), 10753–10761 | DOI | MR | Zbl
[10] Subhonova Z.A., Rahmonov A.A., “Problem of determining the time dependent coefficient in the fractional diffusion-wave equation”, Lobachevskii J. Math., 42:15 (2021), 3747–3760 | DOI | MR | Zbl
[11] Durdiev D.K., Turdiev Kh.X, “Obratnaya zadacha dlya giperbolicheskoi sistemy pervogo poryadka s pamyatyu”, Differents. uravneniya, 56:12 (2020), 1666–1675 | DOI | Zbl
[12] Durdiev D.K., Jumaev J.J., “Memory kernel reconstruction problems in the integro–differential equation of rigid heat conductor”, Math. Meth. Appl. Sci., 45:14 (2022), 8374–8388 | DOI | MR
[13] Durdiev D.K., Rakhmonov A.A., “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii SH-voln v vyazkouprugoi poristoi srede: globalnaya razreshimost”, TMF, 195:3 (2018), 491–506 | DOI | MR | Zbl
[14] Durdiev D.K., “Inverse coefficient problem for the time-fractional diffusion equation”, Eurasian J. Math. Comput. Appl., 9:1 (2022), 44–54 | MR
[15] Alimov Sh.A., Komilov N.M., “Ob opredelenii parametrov, zadayuschikh teplovoi rezhim, po vykhodnym dannym”, Differents. uravneniya, 58:1 (2022), 23–36 | DOI | MR | Zbl
[16] Durdiev U.D., “Zadacha ob opredelenii koeffitsienta reaktsii v drobnom uravnenii diffuzii”, Differents. uravneniya, 57:9 (2021), 1220–1229 | DOI | MR | Zbl
[17] Durdiev U.D., “Obratnaya zadacha po opredeleniyu neizvestnogo koeffitsienta v uravnenii kolebaniya balki”, Differents. uravneniya, 58:1 (2022), 37–44 | DOI | MR | Zbl
[18] Kamynin V.L., “Obratnaya zadacha opredeleniya mladshego koeffitsienta v parabolicheskom uravnenii pri uslovii integralnogo nablyudeniya”, Matem. zametki \, 94:2 (2013), 207–217 \ | DOI | Zbl
[19] Wei T., Wang J., “A modified quasi-boundary value method for an inverse source problem of the time-fractional diffusion equation”, Appl. Numer. Math., 78 (2014), 95–111 | DOI | MR | Zbl
[20] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math., 840, Berlin, Germany, 1981 | DOI | MR | Zbl
[21] Tolstov G.P., Ryady Fure, 3-e izd., Nauka, M., 1980 | MR
[22] Olver F., Teoriya besselevykh funktsii, v. 1, In. lit., M., 1949
[23] Vatson G.N., Vvedenie v asimptoticheskie metody i spetsialnye funktsii, Nauka, M., 1978
[24] Trenogin V.A., Funktsionalnyi analiz, Nauka, M., 1980 | MR