Existence condition of an eigenvalue of the three particle Schr\"odinger operator on a lattice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the three-particle discrete Schrödinger operator $H_{\mu,\gamma}(\mathbf{K}),$ $\mathbf{K}\in\mathbb{T}^3$ associated to a system of three particles (two particle are fermions with mass $1$ and third one is an another particle with mass $m=1/\gamma1$ ) interacting through zero range pairwise potential $\mu>0$ on the three-dimensional lattice $\mathbb{Z}^3.$ It is proved that for $\gamma \in (1,\gamma_0)$ ($\gamma_0\approx 4,7655$) the operator $H_{\mu,\gamma}(\boldsymbol{\pi}),$ $\boldsymbol{\pi}=(\pi,\pi,\pi),$ has no eigenvalue and has only unique eigenvalue with multiplicity three for $\gamma>\gamma_0$ lying right of the essential spectrum for sufficiently large $\mu.$
Keywords: Schrödinger operator on a lattice, Hamiltonian, zero-range, eigenvalue, quasimomentum, invariant subspace, Faddeev operator.
Mots-clés : fermion
@article{IVM_2023_9_a0,
     author = {J. I. Abdullaev and A. M. Khalkhuzhaev and T. H. Rasulov},
     title = {Existence condition of an eigenvalue of the three particle {Schr\"odinger} operator on a lattice},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--19},
     publisher = {mathdoc},
     number = {9},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_9_a0/}
}
TY  - JOUR
AU  - J. I. Abdullaev
AU  - A. M. Khalkhuzhaev
AU  - T. H. Rasulov
TI  - Existence condition of an eigenvalue of the three particle Schr\"odinger operator on a lattice
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 19
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_9_a0/
LA  - ru
ID  - IVM_2023_9_a0
ER  - 
%0 Journal Article
%A J. I. Abdullaev
%A A. M. Khalkhuzhaev
%A T. H. Rasulov
%T Existence condition of an eigenvalue of the three particle Schr\"odinger operator on a lattice
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-19
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_9_a0/
%G ru
%F IVM_2023_9_a0
J. I. Abdullaev; A. M. Khalkhuzhaev; T. H. Rasulov. Existence condition of an eigenvalue of the three particle Schr\"odinger operator on a lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 3-19. http://geodesic.mathdoc.fr/item/IVM_2023_9_a0/

[1] Reed M., and Simon B., Methods of Modern Mathematical Physics, Anal. of Operators, 4, Elsevier, 1978 | MR

[2] Lakaev S.N., Muminov M.E., “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shredingera na reshetke”, TMF, 135:3 (2003), 478–503 | DOI | MR | Zbl

[3] Efimov V., “Energy levels arising from resonant two-body forces in a three-body system”, Phys. Lett. B, 33:8 (1970), 563–564 | DOI

[4] Albeverio S., Hoegh-Krohn R., Wu T.T., “A class of exactly solvable three-body quantum mechanical problems and universal low energy behavior”, Phys. Lett. A, 83:3 (1981), 105–109 | DOI | MR

[5] Amado R.D., Noble J.V., “Efimov's effect: A new pathology of three-particle systems. I”, Phys. Lett. B, 35:1 (1971), 25–27 | DOI

[6] Faddeev L.D., Merkuriev S.P., Quantum scattering theory for several particle systems, Kluwer Acad. Publ., 1993 | MR | Zbl

[7] Yafaev D.R., “K teorii diskretnogo spektra trekhchastichnogo operatora Shredingera”, Matem. sb., 94 (136):4 (8) (1974), 567–593

[8] Ovchinnikov Y.N., Sigal I.M., “Number of bound states of three-body systems and Efimov's effect”, Ann. Phys., 123:2 (1989), 274–295 | DOI | MR

[9] Sobolev A.V., “The Efimov effect. Discrete spectrum asymptotics”, Commun. Math. Phys., 156:1 (1993), 101–126 | DOI | MR | Zbl

[10] Tamura H., “Asymptotics for the number of negative eigenvalues of three-body Schrödinger operators with Efimov effect”, Spectral and Scattering Theory and Applications, Adv. Studies in Pure Math., 23, 1994, 311–322 | DOI | MR | Zbl

[11] Lakaev S.N., Abdullaev Zh.I., “Spektr raznostnogo trekhchastichnogo operatora Shredingera na reshetke”, Matem. zametki, 71:5 (2002), 686-696 | DOI | MR | Zbl

[12] Minlos R.A., “Sistema trekh kvantovykh chastits, vzaimodeistvuyuschikh potochechno”, UMN, 69:3(417) (2014), 145–172 | DOI | MR | Zbl

[13] Lakaev S.N., Khalmukhamedov A.R., Khalkhuzhaev A.M., “O svyazannykh sostoyaniyakh operatora Shredingera sistemy trekh bozonov na reshetke”, TMF, 188:1 (2016), 36–48 | DOI | MR | Zbl

[14] Lakaev S.N., Lakaev Sh.S., “The existence of bound states in a system of three particles in an optical lattice”, J. Phys. A: Math. Theor., 50:33 (2017), 335202 | DOI | MR | Zbl

[15] Lakaev S.N., Dell'Antonio G.F., Khalkhuzhaev A.M., “Existence of an isolated band in a system of three particles in an optical lattice”, J. Phys. A: Math. Theor., 49:14 (2016), 145204 | DOI | MR | Zbl

[16] Abbullaev J.I., Khalkhuzhaev A.M., Kuliev K.D., “The existence of eigenvalues of Schrödinger operator on three dimensional lattice”, Methods of Funct. Anal. and Topology, 28:3 (2022), 189–208 | MR

[17] Albeverio S., Lakaev S.N., Muminov Z.I., “Schrödinger Operators on lattices. The Efimov effect and discrete spectrum asymptotics”, Ann. Henri Poincaré, 5:4 (2004), 743–772 | DOI | MR | Zbl

[18] Abdullaev Zh.I., Ikromov I.A., “Konechnost chisla sobstvennykh znachenii dvukhchastichnogo operatora Shredingera na reshetke”, TMF, 152:3 (2007), 502-517 | DOI | MR | Zbl

[19] Zucker I.J., “70+ Years of the Watson Integrals”, J. Stat. Phys., 145 (2011), 591–612 | DOI | MR | Zbl

[20] Pankov A.A., Lecture Notes on Schrödinger equations, Nova Sci., Publ. Inc., New York, 2007 | MR | Zbl