Existence condition of an eigenvalue of the three particle Schr\"odinger operator on a lattice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 3-19

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the three-particle discrete Schrödinger operator $H_{\mu,\gamma}(\mathbf{K}),$ $\mathbf{K}\in\mathbb{T}^3$ associated to a system of three particles (two particle are fermions with mass $1$ and third one is an another particle with mass $m=1/\gamma1$ ) interacting through zero range pairwise potential $\mu>0$ on the three-dimensional lattice $\mathbb{Z}^3.$ It is proved that for $\gamma \in (1,\gamma_0)$ ($\gamma_0\approx 4,7655$) the operator $H_{\mu,\gamma}(\boldsymbol{\pi}),$ $\boldsymbol{\pi}=(\pi,\pi,\pi),$ has no eigenvalue and has only unique eigenvalue with multiplicity three for $\gamma>\gamma_0$ lying right of the essential spectrum for sufficiently large $\mu.$
Keywords: Schrödinger operator on a lattice, Hamiltonian, zero-range, eigenvalue, quasimomentum, invariant subspace, Faddeev operator.
Mots-clés : fermion
@article{IVM_2023_9_a0,
     author = {J. I. Abdullaev and A. M. Khalkhuzhaev and T. H. Rasulov},
     title = {Existence condition of an eigenvalue of the three particle {Schr\"odinger} operator on a lattice},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--19},
     publisher = {mathdoc},
     number = {9},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_9_a0/}
}
TY  - JOUR
AU  - J. I. Abdullaev
AU  - A. M. Khalkhuzhaev
AU  - T. H. Rasulov
TI  - Existence condition of an eigenvalue of the three particle Schr\"odinger operator on a lattice
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 19
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_9_a0/
LA  - ru
ID  - IVM_2023_9_a0
ER  - 
%0 Journal Article
%A J. I. Abdullaev
%A A. M. Khalkhuzhaev
%A T. H. Rasulov
%T Existence condition of an eigenvalue of the three particle Schr\"odinger operator on a lattice
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-19
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_9_a0/
%G ru
%F IVM_2023_9_a0
J. I. Abdullaev; A. M. Khalkhuzhaev; T. H. Rasulov. Existence condition of an eigenvalue of the three particle Schr\"odinger operator on a lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 3-19. http://geodesic.mathdoc.fr/item/IVM_2023_9_a0/