Refined transformational model of deformation of a rod-strip with a fixed section on one of the front surfaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 78-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

A refined geometrically nonlinear model of static and dynamic deformation has been developed for a rod-strip which connected on one of its faces to an absolutely rigid support element of finite length. This model describes the transformation of bending forms of motion of the unfixed section into longitudinal-shear forms of motion of the fixed section. The model is based on of S.P. Timoshenko's model for the unfixed section, taking into account transverse shear and compression deformations, which is transformed into another model when transitioning from the unfixed to the fixed section. The main equations corresponding to the constructed model for the unfixed section are derived with such precision and content that, in the case of static deformation, they allow for the identification of classical buckling forms of instability (BFI) under conditions of axial compression and transverse-shear BFI under conditions of bending, while in the case of dynamic deformation, they allow for the transformation of bending forms of oscillations into forced and parametric longitudinal-transverse forms. For the formulation of linear stationary dynamic problems, the derived equations are reduced to three unconnected equations that allow for exact analytical solutions.
Keywords: rod-strip, 2d-problem, anchoring zone, Timoshenko model, cross-section coupling conditions, transformational deformation model.
@article{IVM_2023_8_a8,
     author = {V. N. Paimushin and A. M. Kamalutdinov and M. A. Shishov and S. F. Chumakova},
     title = {Refined transformational model of deformation of a rod-strip with a fixed section on one of the front surfaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--86},
     publisher = {mathdoc},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a8/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - A. M. Kamalutdinov
AU  - M. A. Shishov
AU  - S. F. Chumakova
TI  - Refined transformational model of deformation of a rod-strip with a fixed section on one of the front surfaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 78
EP  - 86
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_8_a8/
LA  - ru
ID  - IVM_2023_8_a8
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A A. M. Kamalutdinov
%A M. A. Shishov
%A S. F. Chumakova
%T Refined transformational model of deformation of a rod-strip with a fixed section on one of the front surfaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 78-86
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_8_a8/
%G ru
%F IVM_2023_8_a8
V. N. Paimushin; A. M. Kamalutdinov; M. A. Shishov; S. F. Chumakova. Refined transformational model of deformation of a rod-strip with a fixed section on one of the front surfaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 78-86. http://geodesic.mathdoc.fr/item/IVM_2023_8_a8/

[1] Paimushin V.N., “Ploskie zadachi mekhaniki pryamykh sterzhnei s uchetom deformiruemosti uchastkov zakrepleniya, imeyuschikh konechnuyu dlinu”, Izv. vuzov. Matem., 2022, no. 3, 89–96 | Zbl

[2] Paimushin V.N., Shishkin V.M., Firsov V.A., Gazizullin R.K., “Transforming Deformation Model of Flat Beams with Finite Length Fastening Areas Located on One of the Front-Face Surfaces”, Deformation and Destruction of Materials and Structures Under Quasi-static and Impulse Loading, Adv. Structured Materials, 186, 2023, 185–200 | DOI

[3] Novozhilov V.V., Osnovy nelineinoi teorii uprugosti, Gostekhizdat, M., 1948 | MR

[4] Paimushin V.N., Shalashilin V.I., “Neprotivorechivyi variant teorii deformatsii sploshnykh sred v kvadratichnom priblizhenii”, Dokl. RAN, 396:4 (2004), 492–495

[5] Paimushin V.N., Shalashilin V.I., “O sootnosheniyakh teorii deformatsii v kvadratichnom priblizhenii i problemy postroeniya utochnennykh variantov geometricheski nelineinoi teorii sloistykh elementov konstruktsii”, Prikl. matem. i mekhan., 69:5 (2005), 861–881 | Zbl

[6] Donnell L.G., Balki, plastiny i obolochki, Nauka, M., 1982

[7] Shklyarchuk F.N., “K raschetu deformirovannogo sostoyaniya i ustoichivosti geometricheski nelineinykh uprugikh sistem”, Mekhan. tverdogo tela, 1998, no. 1, 140–146

[8] Paimushin V.N., Makarov M.V., Chumakova S.F., “Vynuzhdennye i parametricheskie kolebaniya kompozitnoi plastiny, vyzyvaemye ee rezonansnymi izgibnymi kolebaniyami”, Izv. vuzov. Matem., 2022, no. 10, 86–94 | Zbl

[9] Galimov K.Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975