Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_8_a8, author = {V. N. Paimushin and A. M. Kamalutdinov and M. A. Shishov and S. F. Chumakova}, title = {Refined transformational model of deformation of a rod-strip with a fixed section on one of the front surfaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {78--86}, publisher = {mathdoc}, number = {8}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a8/} }
TY - JOUR AU - V. N. Paimushin AU - A. M. Kamalutdinov AU - M. A. Shishov AU - S. F. Chumakova TI - Refined transformational model of deformation of a rod-strip with a fixed section on one of the front surfaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 78 EP - 86 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_8_a8/ LA - ru ID - IVM_2023_8_a8 ER -
%0 Journal Article %A V. N. Paimushin %A A. M. Kamalutdinov %A M. A. Shishov %A S. F. Chumakova %T Refined transformational model of deformation of a rod-strip with a fixed section on one of the front surfaces %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 78-86 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_8_a8/ %G ru %F IVM_2023_8_a8
V. N. Paimushin; A. M. Kamalutdinov; M. A. Shishov; S. F. Chumakova. Refined transformational model of deformation of a rod-strip with a fixed section on one of the front surfaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 78-86. http://geodesic.mathdoc.fr/item/IVM_2023_8_a8/
[1] Paimushin V.N., “Ploskie zadachi mekhaniki pryamykh sterzhnei s uchetom deformiruemosti uchastkov zakrepleniya, imeyuschikh konechnuyu dlinu”, Izv. vuzov. Matem., 2022, no. 3, 89–96 | Zbl
[2] Paimushin V.N., Shishkin V.M., Firsov V.A., Gazizullin R.K., “Transforming Deformation Model of Flat Beams with Finite Length Fastening Areas Located on One of the Front-Face Surfaces”, Deformation and Destruction of Materials and Structures Under Quasi-static and Impulse Loading, Adv. Structured Materials, 186, 2023, 185–200 | DOI
[3] Novozhilov V.V., Osnovy nelineinoi teorii uprugosti, Gostekhizdat, M., 1948 | MR
[4] Paimushin V.N., Shalashilin V.I., “Neprotivorechivyi variant teorii deformatsii sploshnykh sred v kvadratichnom priblizhenii”, Dokl. RAN, 396:4 (2004), 492–495
[5] Paimushin V.N., Shalashilin V.I., “O sootnosheniyakh teorii deformatsii v kvadratichnom priblizhenii i problemy postroeniya utochnennykh variantov geometricheski nelineinoi teorii sloistykh elementov konstruktsii”, Prikl. matem. i mekhan., 69:5 (2005), 861–881 | Zbl
[6] Donnell L.G., Balki, plastiny i obolochki, Nauka, M., 1982
[7] Shklyarchuk F.N., “K raschetu deformirovannogo sostoyaniya i ustoichivosti geometricheski nelineinykh uprugikh sistem”, Mekhan. tverdogo tela, 1998, no. 1, 140–146
[8] Paimushin V.N., Makarov M.V., Chumakova S.F., “Vynuzhdennye i parametricheskie kolebaniya kompozitnoi plastiny, vyzyvaemye ee rezonansnymi izgibnymi kolebaniyami”, Izv. vuzov. Matem., 2022, no. 10, 86–94 | Zbl
[9] Galimov K.Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975