Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_8_a5, author = {A. E. Pasenchuk}, title = {Invertibility and spectrum of the {Riemann} boundary value problem operator in a countably normed space of smooth functions on a circle}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {56--63}, publisher = {mathdoc}, number = {8}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a5/} }
TY - JOUR AU - A. E. Pasenchuk TI - Invertibility and spectrum of the Riemann boundary value problem operator in a countably normed space of smooth functions on a circle JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 56 EP - 63 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_8_a5/ LA - ru ID - IVM_2023_8_a5 ER -
%0 Journal Article %A A. E. Pasenchuk %T Invertibility and spectrum of the Riemann boundary value problem operator in a countably normed space of smooth functions on a circle %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 56-63 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_8_a5/ %G ru %F IVM_2023_8_a5
A. E. Pasenchuk. Invertibility and spectrum of the Riemann boundary value problem operator in a countably normed space of smooth functions on a circle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 56-63. http://geodesic.mathdoc.fr/item/IVM_2023_8_a5/