Invertibility and spectrum of the Riemann boundary value problem operator in a countably normed space of smooth functions on a circle
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 56-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a countably normed space of smooth functions on the unit circle, we consider the Riemann boundary value problem operator with smooth coefficients. The concept of smooth degenerate factorizations of types of plus and minus functions that are smooth on the unit circle is introduced. Criteria for the existence of such factorizations are given. An apparatus is given for calculating the indices of these factorizations in terms of coefficients. In terms of smooth degenerate factorizations, a criterion for the invertibility of the Riemann boundary value problem operator is obtained. This allows us to describe the spectrum of this operator. Relationships between the spectra of the Riemann operator in the spaces of smooth and summable functions with the same coefficients are indicated.
Keywords: $A$-singular operator Riemann, problem linear conjugation, factorization, index, spectrum.
@article{IVM_2023_8_a5,
     author = {A. E. Pasenchuk},
     title = {Invertibility and spectrum of the {Riemann} boundary value problem operator in a countably normed space of smooth functions on a circle},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--63},
     publisher = {mathdoc},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a5/}
}
TY  - JOUR
AU  - A. E. Pasenchuk
TI  - Invertibility and spectrum of the Riemann boundary value problem operator in a countably normed space of smooth functions on a circle
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 56
EP  - 63
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_8_a5/
LA  - ru
ID  - IVM_2023_8_a5
ER  - 
%0 Journal Article
%A A. E. Pasenchuk
%T Invertibility and spectrum of the Riemann boundary value problem operator in a countably normed space of smooth functions on a circle
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 56-63
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_8_a5/
%G ru
%F IVM_2023_8_a5
A. E. Pasenchuk. Invertibility and spectrum of the Riemann boundary value problem operator in a countably normed space of smooth functions on a circle. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 56-63. http://geodesic.mathdoc.fr/item/IVM_2023_8_a5/

[1] Gakhov F.D., Kraevye zadachi, Nauka, M., 1977

[2] Gokhberg I.Ts., Feldman I.A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971

[3] Gokhberg I.Ts., Krupnik N.Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh uravnenii, Shtiintsa, Kishinev, 1973

[4] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979

[5] Soldatov A.P., Odnomernye singulyarnye operatory i kraevye zadachi teorii funktsii, Vyssh. shk., M., 1991

[6] Zilberman B., “O singulyarnykh operatorakh v prostranstvakh beskonechno differentsiruemykh i obobschennykh funktsii”, Matem. issled., 6:3 (1971), 168–179 | MR | Zbl

[7] Pasenchuk A.E., Diskretnye operatory tipa svertki v klassakh posledovatelnostei so stepennym kharakterom povedeniya na beskonechnosti, Izd-vo YuFU, Rostov-na-Donu, 2013

[8] Pasenchuk A.E., Seregina V.V., “O matrichnom operatore Rimana v prostranstve gladkikh vektor-funktsii”, Vladikavkaz. matem. zhurn., 21:3 (2019), 50–61 | MR | Zbl

[9] Pasenchuk A.E., Seregina V.V., “O spektre operatora Teplitsa v schetno-normirovannom prostranstve gladkikh funktsii”, Vladikavkaz. matem. zhurn., 4:3 (2022), 96–107 | DOI | MR