Infinitely many solutions for Schr\"odinger-Kirchhoff-type equations involving the fractional $p(x,\cdot)$-Laplacian
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 23-34
Voir la notice de l'article provenant de la source Math-Net.Ru
The aim of this paper is to study the existence of infinitely many solutions for Schrödinger-Kirchhoff-type equations involving nonlocal $p(x,\cdot)$-fractional Laplacian $$ \begin{array}{ll} M \big(\sigma_{p(x,y)}(u)\big)\mathcal{L}_K^{p(x,\cdot)} (u) =\lambda \vert u\vert^{q(x)-2}u+\mu \vert u \vert^{\gamma(x)-2}u \text{ in } \Omega,\\ u(x)=0 \textrm{ in } \mathbb{R}^{N}\backslash \Omega, \end{array} $$ where $$ \sigma_{p(x,y)}(u)=\int _{\mathcal{Q}} \frac{|u(x)-u(y)|^{p(x,y)}}{p(x,y)}K(x,y) dx dy, $$ $\mathcal{L}_{K}^{p(x,\cdot)}$ is a nonlocal operator with singular kernel $K$, $\Omega$ is a bounded domain in $\mathbb{R}^N$ with Lipschitz boundary $\partial \Omega$, $M:\mathbb{R}^+ \rightarrow \mathbb{R}$ is a continuous function, $q, \gamma \in C(\Omega)$ and $\lambda,~ \mu$ are two parameters. Under some suitable assumptions, we show that the above problem admits infinitely many solutions by applying the Fountain Theorem and the Dual Fountain Theorem.
Keywords:
fractional $p(x,\cdot)$-Laplacian, Schrödinger-Kirchhoff-type problem, variational methods.
@article{IVM_2023_8_a2,
author = {M. Mirzapour},
title = {Infinitely many solutions for {Schr\"odinger-Kirchhoff-type} equations involving the fractional $p(x,\cdot)${-Laplacian}},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {23--34},
publisher = {mathdoc},
number = {8},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a2/}
}
TY - JOUR AU - M. Mirzapour TI - Infinitely many solutions for Schr\"odinger-Kirchhoff-type equations involving the fractional $p(x,\cdot)$-Laplacian JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 23 EP - 34 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_8_a2/ LA - ru ID - IVM_2023_8_a2 ER -
%0 Journal Article %A M. Mirzapour %T Infinitely many solutions for Schr\"odinger-Kirchhoff-type equations involving the fractional $p(x,\cdot)$-Laplacian %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 23-34 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_8_a2/ %G ru %F IVM_2023_8_a2
M. Mirzapour. Infinitely many solutions for Schr\"odinger-Kirchhoff-type equations involving the fractional $p(x,\cdot)$-Laplacian. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 23-34. http://geodesic.mathdoc.fr/item/IVM_2023_8_a2/