Infinitely many solutions for Schr\"odinger-Kirchhoff-type equations involving the fractional $p(x,\cdot)$-Laplacian
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 23-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of this paper is to study the existence of infinitely many solutions for Schrödinger-Kirchhoff-type equations involving nonlocal $p(x,\cdot)$-fractional Laplacian $$ \begin{array}{ll} M \big(\sigma_{p(x,y)}(u)\big)\mathcal{L}_K^{p(x,\cdot)} (u) =\lambda \vert u\vert^{q(x)-2}u+\mu \vert u \vert^{\gamma(x)-2}u \text{ in } \Omega,\\ u(x)=0 \textrm{ in } \mathbb{R}^{N}\backslash \Omega, \end{array} $$ where $$ \sigma_{p(x,y)}(u)=\int _{\mathcal{Q}} \frac{|u(x)-u(y)|^{p(x,y)}}{p(x,y)}K(x,y) dx dy, $$ $\mathcal{L}_{K}^{p(x,\cdot)}$ is a nonlocal operator with singular kernel $K$, $\Omega$ is a bounded domain in $\mathbb{R}^N$ with Lipschitz boundary $\partial \Omega$, $M:\mathbb{R}^+ \rightarrow \mathbb{R}$ is a continuous function, $q, \gamma \in C(\Omega)$ and $\lambda,~ \mu$ are two parameters. Under some suitable assumptions, we show that the above problem admits infinitely many solutions by applying the Fountain Theorem and the Dual Fountain Theorem.
Keywords: fractional $p(x,\cdot)$-Laplacian, Schrödinger-Kirchhoff-type problem, variational methods.
@article{IVM_2023_8_a2,
     author = {M. Mirzapour},
     title = {Infinitely many solutions for {Schr\"odinger-Kirchhoff-type} equations involving the fractional $p(x,\cdot)${-Laplacian}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--34},
     publisher = {mathdoc},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a2/}
}
TY  - JOUR
AU  - M. Mirzapour
TI  - Infinitely many solutions for Schr\"odinger-Kirchhoff-type equations involving the fractional $p(x,\cdot)$-Laplacian
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 23
EP  - 34
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_8_a2/
LA  - ru
ID  - IVM_2023_8_a2
ER  - 
%0 Journal Article
%A M. Mirzapour
%T Infinitely many solutions for Schr\"odinger-Kirchhoff-type equations involving the fractional $p(x,\cdot)$-Laplacian
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 23-34
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_8_a2/
%G ru
%F IVM_2023_8_a2
M. Mirzapour. Infinitely many solutions for Schr\"odinger-Kirchhoff-type equations involving the fractional $p(x,\cdot)$-Laplacian. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 23-34. http://geodesic.mathdoc.fr/item/IVM_2023_8_a2/

[1] Bahrouni A., Rădulescu V.D., “On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent”, Discrete Contin. Dyn. Syst., 11 (2018), 379–389 | MR | Zbl

[2] Del Pezzo L.M., Rossi J.D., “Trace for fractional Sobolev spaces with variable exponents”, Adv. Oper. Theory, 2:4 (2017), 435–446 | MR | Zbl

[3] Kaufmann U., Rossi J.D., Vidal R., “Fractional Sobolev spaces with variable exponents and fractional $p(x)$-Laplacians”, Electron. J. Qual. Theor. Differ. Eq., 76 (2017), 1–10 | MR

[4] Applebaum D., “Lévy processes-form probability to finance quantum groups”, Notices Am. Soc., 51 (2004), 1336–1347 | MR | Zbl

[5] Caffarelli L., “Nonlocal equations, drifts and games”, Nonlinear Partial Differ. Equ. Abel Symp., 7 (2012), 37–52 | DOI | MR | Zbl

[6] Metzler R., Klafter J., “The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics”, J. Phys. A, 37 (2004), 161–208 | DOI | MR

[7] Laskin N., “Fractional quantum mechanics and Lévy path integrals”, Phys. Lett. A, 268 (2000), 298–305 | DOI | MR | Zbl

[8] Laskin N., “Fractional Schrödinger equation”, Phys. Rev. E, 66 (2002), 056108 | DOI | MR

[9] Ali K.B., Hsini M., Kefi K., Chung N.T., “On a nonlocal fractional $p(\cdot,\cdot)$-Laplacian problem with competing nonlinearities”, Complex Anal. Oper. Theory | DOI | MR

[10] Azroul E., Benkirane A. and Shimi M., “Existence and multiplicity of solutions for fractional $p(x,\cdot)$-Kirchhoff-type problems in $\mathbb{R}^N$”, Appl. Anal., 2019 | DOI | MR

[11] Azroul E., Benkirane A., Shimi M. and Srati M., “On a class of fractional p(x)-Kirchhoff type problems”, Appl. Anal., 2019 | DOI | MR

[12] Chung N.T., “Eigenvalue problems for fractional $p(x,y)$-Laplacian equations with indefinite weight”, Taiwanese J. Math., 23 (2019), 1153–1173 | DOI | MR | Zbl

[13] Lee J.I., Kim J.M., Kim Y.H., Lee J., “Multiplicity of weak solutions to non-local elliptic equations involving the fractional $p(x,\cdot)-Laplacian$”, J. Math. Phys., 61 (2020), 011505 | DOI | MR | Zbl

[14] Kirchhoff G., Mechanik, Teubner, Leipzig, 1883

[15] Edmunds D.E., Rákosník J., “Density of smooth functions in $W^{k,p(x)} (\Omega)$”, Proc. R. Soc. A, 437 (1992), 229–236 | MR | Zbl

[16] Edmunds D.E., Rákosník J., “Sobolev embeddings with variable exponent”, Stud. Math., 143 (2000), 267–293 | DOI | MR | Zbl

[17] Fan X.L., Zhao D., “On the spaces $L^{p(x)} (\Omega)$ and $W^{m,p(x)}(\Omega)$”, J. Math. Anal. Appl., 263 (2001), 424–446 | DOI | MR | Zbl

[18] Azroul E., Benkirane A. and Shimi M., “General fractional Sobolev spaces with variable exponent and applications to nonlocal problems”, Adv. Oper. Theory, 5 (2020), 1512–1440 | DOI | MR

[19] Zhao J.F., Structure Theory of Banach Spaces, Wuhan University Press, Wuhan, 1991 (in Chinese)

[20] Willem M., Minimax Theorems, Birkhäuser, Boston, 1996 | MR | Zbl

[21] Fan X.L., Zhang Q.H., “Existence of solutions for $p(x)$-Laplacian Dirichlet problems”, Nonlinear Anal., 52 (2003), 1843–1852 | DOI | MR | Zbl