Invariant measure of circle maps with mixed type of singularities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 71-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the critical circle homeomorphisms with several break points. It is well known that a circle homeomorphisms $f$ with irrational rotation number $\rho$ is strictly ergodic, i.e. it has a unique $f$ –invariant probability measure $\mu$. We prove that invariant measure of critical circle homeomorphisms with finite number of break points is singular w.r.t Lebegue measure.
Keywords: Circle homeomorphisms, invariant measure, rotation number, break point, critical point, singular measure.
@article{IVM_2023_7_a7,
     author = {U. A. Safarov},
     title = {Invariant measure of circle maps with mixed type of singularities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--84},
     publisher = {mathdoc},
     number = {7},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_7_a7/}
}
TY  - JOUR
AU  - U. A. Safarov
TI  - Invariant measure of circle maps with mixed type of singularities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 71
EP  - 84
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_7_a7/
LA  - ru
ID  - IVM_2023_7_a7
ER  - 
%0 Journal Article
%A U. A. Safarov
%T Invariant measure of circle maps with mixed type of singularities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 71-84
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_7_a7/
%G ru
%F IVM_2023_7_a7
U. A. Safarov. Invariant measure of circle maps with mixed type of singularities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 71-84. http://geodesic.mathdoc.fr/item/IVM_2023_7_a7/

[1] Kornfeld I.P., Sinai Ya.G., Fomin S.V., Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[2] Denjoy A., “Sur les courbes définies par les équations différentielles à la surface du tore”, J. Math. Pure Appl., 11 (1932), 333–375 | Zbl

[3] Herman M., “Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations”, Publ. Math. IHES, 49, 1979, 5–233 | DOI | MR | Zbl

[4] Dzhalilov A.A., Khanin K.M., “Ob invariantnoi mere dlya gomeomorfizmov okruzhnosti s izlomom”, Funkts. anal. i ego pril., 32:3 (1998), 11–21 | DOI | MR | Zbl

[5] Dzhalilov A.A., Liousse I., “Circle homeomorphisms with two break points”, Nonlinearity, 19:8 (2006), 1951–1968 | DOI | MR | Zbl

[6] Dzhalilov A.A., Liousse I., Mayer D., “Singular measures of piecewise smooth circle homeomorphisms with two break points”, Discrete Sontin. Dyn. Syst., 24:2 (2009), 381–403 | DOI | MR | Zbl

[7] Dzhalilov A.A., Mayer D., Safarov U.A., “Piecwise-smooth circle homeomorphisms with several break points”, Izv. Math., 76:1 (2012), 94–112 | DOI | MR | Zbl

[8] Teplinsky A., “A circle diffeomorphism with breaks that is absolutely continuously linearizable”, Ergodic Theory Dyn. Syst., 38:1 (2018), 371–383 | DOI | MR | Zbl

[9] Guarino P., de Faria E., “There are no $\sigma$-finite absolutely continuous invariant measures for multicritical circle maps”, Nonlinearity, 34:10 (2021), 6727–6749 | DOI | MR | Zbl

[10] Yoccoz J.C., “Il n'y a pas de contre-exemple de Denjoy analytique”, J.C.R. Acad. Sci. Paris., 298:7 (1984), 141–144 | MR | Zbl

[11] Graczyk J., Swiatek G., “Singular measures in circle dynamics”, Commun. Math. Phys., 157 (1993), 213–230 | DOI | MR | Zbl

[12] Cinai Ya.G., Sovremennye problemy ergodicheskoi teorii, Fizmatlit, M., 1995

[13] Swiatek G., “Rational rotation numbers for maps of the circle”, Commun. Math. Phys., 119:1 (1988), 109–128 | DOI | MR | Zbl

[14] Preston C., Iterates of maps on an interval, Lect. Notes Math., 999, Springer, Berlin–New York, 1983 | DOI | MR | Zbl

[15] Estevez G., de Faria E., “Real bounds and quasisymmetric rigidity of multicritical circle maps”, Amer. Math. Soc., 370:8 (2018), 5583–5616 | DOI | MR | Zbl