About linear uniformalization for countable family of topological properties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 34-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a uniformalization for topological properties in sense of E. Michael and J. Dugundji. We linearly uniformalize countable family of topological properties. Our result can be usefull in selection theory; in particular we obtain linear uniformalization of attractive property in closed subspaces of normed vector space.
Keywords: uniformalization, topological property, equivariant locally connected space, attractive family, remetrization of metric space.
@article{IVM_2023_7_a3,
     author = {Dz. N. Kazhamiakin},
     title = {About linear uniformalization for countable family of topological properties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {34--41},
     publisher = {mathdoc},
     number = {7},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_7_a3/}
}
TY  - JOUR
AU  - Dz. N. Kazhamiakin
TI  - About linear uniformalization for countable family of topological properties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 34
EP  - 41
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_7_a3/
LA  - ru
ID  - IVM_2023_7_a3
ER  - 
%0 Journal Article
%A Dz. N. Kazhamiakin
%T About linear uniformalization for countable family of topological properties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 34-41
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_7_a3/
%G ru
%F IVM_2023_7_a3
Dz. N. Kazhamiakin. About linear uniformalization for countable family of topological properties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 34-41. http://geodesic.mathdoc.fr/item/IVM_2023_7_a3/

[1] Dugundji J., Michael E., “On local and uniformly local topological properties”, Proc. Amer. Math. Soc., 7:2 (1956), 304–307 | DOI | MR | Zbl

[2] Michael E., “Continuous selections II”, Ann. Math., Second Ser., 64:3 (1956), 562–580 | DOI | MR | Zbl

[3] Dobrowolski T., Marciszewski W., “Rays and the fixed point property in noncompact spaces”, Tsukuba J. Math., 21:1 (1997), 97–112 | DOI | MR | Zbl

[4] J. van Mill, Ifinite–Dimensional Topology. Prerequisites and Introduction, NHPC, Amsterdam, 1989 | MR

[5] Hu S., Theory of retracts, Wayne State Univ. Press, Detroit, 1965 | MR | Zbl

[6] Borsuk K., Theory of retracts, Monogr. Mat., 44, PWN, Warsaw, 1967 | MR | Zbl

[7] Tukey J.W., Convergence and uniformity in topology, Princeton Univ. Press, London, 1940 | MR | Zbl

[8] Ageev S.M., “Nonpolyhedral proof of the Michael finite–dimensional selection theorem”, J. Math. Sci., 144:5 (2007), 4367–4379 | DOI | MR | Zbl