Fatou's theorem for $A(z)$-analytic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 13-22

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider $A(z)-$analytic functions in case when $A(z)$ is an anti-analytic function. This paper investigates the behavior near the boundary of the derivative of the function, $A(z)-$analytic inside the $A(z)-$lemniscate and with a bounded change of it at the boundary. Thus, this paper introduces the complex Lipschitz condition for $A(z)-$analytic functions and proves Fatou's theorem for $A(z)-$analytic functions.
Keywords: $A(z)$-analytic function, $A(z)$-lemniscate, “radial” convergence in $A(z)$-lemniscate, the complex Lipschitz condition for $A(z)$-analytic function, Fatou's theorem for $A(z)$-analytic function.
@article{IVM_2023_7_a1,
     author = {N. M. Zhabborov and B. E. Husenov},
     title = {Fatou's theorem for $A(z)$-analytic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--22},
     publisher = {mathdoc},
     number = {7},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_7_a1/}
}
TY  - JOUR
AU  - N. M. Zhabborov
AU  - B. E. Husenov
TI  - Fatou's theorem for $A(z)$-analytic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 13
EP  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_7_a1/
LA  - ru
ID  - IVM_2023_7_a1
ER  - 
%0 Journal Article
%A N. M. Zhabborov
%A B. E. Husenov
%T Fatou's theorem for $A(z)$-analytic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 13-22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_7_a1/
%G ru
%F IVM_2023_7_a1
N. M. Zhabborov; B. E. Husenov. Fatou's theorem for $A(z)$-analytic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 13-22. http://geodesic.mathdoc.fr/item/IVM_2023_7_a1/