Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_7_a0, author = {B. I. Bahronov and T. H. Rasulov and M. Rehman}, title = {Conditions for the existence of eigenvalues of a three-particle lattice model {Hamiltonian}}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--12}, publisher = {mathdoc}, number = {7}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_7_a0/} }
TY - JOUR AU - B. I. Bahronov AU - T. H. Rasulov AU - M. Rehman TI - Conditions for the existence of eigenvalues of a three-particle lattice model Hamiltonian JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 3 EP - 12 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_7_a0/ LA - ru ID - IVM_2023_7_a0 ER -
%0 Journal Article %A B. I. Bahronov %A T. H. Rasulov %A M. Rehman %T Conditions for the existence of eigenvalues of a three-particle lattice model Hamiltonian %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 3-12 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_7_a0/ %G ru %F IVM_2023_7_a0
B. I. Bahronov; T. H. Rasulov; M. Rehman. Conditions for the existence of eigenvalues of a three-particle lattice model Hamiltonian. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2023_7_a0/
[1] Graf G.M., Schenker D., “$2$-magnon scattering in the Heisenberg model”, Ann. Inst. Henri Poincaré Phys. Théor., 67:1 (1997), 91–107 | MR | Zbl
[2] Faria P.A. da Veiga, Ioriatti L., O'Carroll M., “Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians”, Phys. Rev. E, 66:3 (2002), 016130 | MR
[3] Mattis D., “The few-body problem on a lattice”, Rev. Mod. Phys., 58:2 (1986), 361–379 | DOI | MR
[4] Mogilner A.I., “Hamiltonians of solid-state physics as multiparticle discrete Schrödinger operators: Problems and Results”, Adv. Sov. Math., 5 (1991), 139–194 | MR | Zbl
[5] Malyshev V.A., Minlos R.A., Linear Infinite-Particle Operators, Translations of Mathematical Monographs, 143, Amer. Math. Soc., 1995 | DOI | MR | Zbl
[6] Albeverio S., Lakaev S.N., Djumanova R.Kh., “The essential and discrete spectrum of a model operator associated to a system of three identical quantum particles”, Rep. Math. Phys., 63:3 (2009), 359–380 | DOI | MR | Zbl
[7] Albeverio S., Lakaev S.N., Muminov Z.I., “On the number of eigenvalues of a model operator associated to a system of three-particles on lattices”, Russ. J. Math. Phys., 14:4 (2007), 377–387 | DOI | MR | Zbl
[8] Rasulov T.Kh., Mukhitdinov R.T., “Konechnost diskretnogo spektra modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Izv. vuzov. Matem., 2014, no. 1, 61–70 | Zbl
[9] Heine V., Cohen M., Weaire D., The Pseudopotential Concept, Academic Press, New York–London, 1970
[10] Karpenko B.V., Dyakin V.V., Budrina G.A., “Two electrons in Hubbard model”, Phys. Met. Metallogr., 61:4 (1986), 702–706
[11] Muminov M.E., “O vyrazhenii chisla sobstvennykh znachenii modeli Fridrikhsa”, Matem. zametki, 82:1 (2007), 75–83 | DOI | MR | Zbl
[12] Albeverio S., Lakaev S.N., Muminov Z.I., “The threshold effects for a family of Friedrichs models under rank one perturbations”, J. Math. Anal. Appl., 330:2 (2007), 1152–1168 | DOI | MR | Zbl
[13] Albeverio S., Lakaev S.N., Rasulov T.H., “On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics”, J. Stat. Phys., 127:2 (2007), 191–220 | DOI | MR | Zbl
[14] Muminov M.I., Rasulov T.H., Tosheva N.A., “Analysis of the discrete spectrum of the family of $3 \times 3$ operator matrices”, Commun. Math. Anal., 23:1 (2020), 17–37 | MR | Zbl
[15] Rasulov T.H., Dilmurodov E.B., “Eigenvalues and virtual levels of a family of $2\times 2$ operator matrices”, Methods of Functional Anal. and Topology, 25:3 (2019), 273–281 | MR
[16] Rasulov T.H., Dilmurodov E.B., “Analysis of the spectrum of a $2\times 2$ operator matrices. Discrete spectrum asymptotics”, Nanosistemy: fizika, khimiya, matematika, 11:2 (2020), 138–144 | MR
[17] Rasulov T.Kh., Dilmurodov E.B., “Beskonechnost chisla sobstvennykh znachenii operatornykh $(2\times 2)$-matrits. Asimptotika diskretnogo spektra”, TMF, 205:3 (2020), 368–390 | DOI | MR | Zbl
[18] Rasulov T.Kh., Dilmurodov E.B., “Issledovanie chislovoi oblasti znachenii odnoi operatornoi matritsy”, Vestn. Samarsk. gos. tekh. un-ta. Ser. Fiz.-matem. nauki, 2:35 (2014), 50–63 | DOI | Zbl
[19] Rasulov T.H., Dilmurodov E.B., “Estimates for the Bounds of the Essential Spectrum of a $2\times 2$ Operator Matrix”, Contemp. Math., 1, no. 4, 2020, 170–186 | MR
[20] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York, 1979 | MR | Zbl