Conditions for the existence of eigenvalues of a three-particle lattice model Hamiltonian
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we present a three-particle lattice model Hamiltonain $H_{\mu,\lambda}$, $\mu,\lambda>0$ by making use of non-local potential. The Hamiltonian under consideration acts as a tensor sum of two Friedrichs models $h_{\mu,\lambda}$ which comprises a rank $2$ perturbation associated with a system of three quantum particles on a ${d}$-dimensional lattice. The current study investigates the number of eigenvalues associated with the Hamiltonian. Furthermore, we provide the suitable conditions on the existence of eigenvalues localized inside, in the gap and below the bottom of the essential spectrum of $H_{\mu,\lambda}$.
Keywords: model Hamiltonian, lattice, non-local potential, tensor sum, Friedrichs model, spectrum.
Mots-clés : perturbation
@article{IVM_2023_7_a0,
     author = {B. I. Bahronov and T. H. Rasulov and M. Rehman},
     title = {Conditions for the existence of eigenvalues of a three-particle lattice model {Hamiltonian}},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {7},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_7_a0/}
}
TY  - JOUR
AU  - B. I. Bahronov
AU  - T. H. Rasulov
AU  - M. Rehman
TI  - Conditions for the existence of eigenvalues of a three-particle lattice model Hamiltonian
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 12
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_7_a0/
LA  - ru
ID  - IVM_2023_7_a0
ER  - 
%0 Journal Article
%A B. I. Bahronov
%A T. H. Rasulov
%A M. Rehman
%T Conditions for the existence of eigenvalues of a three-particle lattice model Hamiltonian
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-12
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_7_a0/
%G ru
%F IVM_2023_7_a0
B. I. Bahronov; T. H. Rasulov; M. Rehman. Conditions for the existence of eigenvalues of a three-particle lattice model Hamiltonian. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2023), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2023_7_a0/

[1] Graf G.M., Schenker D., “$2$-magnon scattering in the Heisenberg model”, Ann. Inst. Henri Poincaré Phys. Théor., 67:1 (1997), 91–107 | MR | Zbl

[2] Faria P.A. da Veiga, Ioriatti L., O'Carroll M., “Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians”, Phys. Rev. E, 66:3 (2002), 016130 | MR

[3] Mattis D., “The few-body problem on a lattice”, Rev. Mod. Phys., 58:2 (1986), 361–379 | DOI | MR

[4] Mogilner A.I., “Hamiltonians of solid-state physics as multiparticle discrete Schrödinger operators: Problems and Results”, Adv. Sov. Math., 5 (1991), 139–194 | MR | Zbl

[5] Malyshev V.A., Minlos R.A., Linear Infinite-Particle Operators, Translations of Mathematical Monographs, 143, Amer. Math. Soc., 1995 | DOI | MR | Zbl

[6] Albeverio S., Lakaev S.N., Djumanova R.Kh., “The essential and discrete spectrum of a model operator associated to a system of three identical quantum particles”, Rep. Math. Phys., 63:3 (2009), 359–380 | DOI | MR | Zbl

[7] Albeverio S., Lakaev S.N., Muminov Z.I., “On the number of eigenvalues of a model operator associated to a system of three-particles on lattices”, Russ. J. Math. Phys., 14:4 (2007), 377–387 | DOI | MR | Zbl

[8] Rasulov T.Kh., Mukhitdinov R.T., “Konechnost diskretnogo spektra modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Izv. vuzov. Matem., 2014, no. 1, 61–70 | Zbl

[9] Heine V., Cohen M., Weaire D., The Pseudopotential Concept, Academic Press, New York–London, 1970

[10] Karpenko B.V., Dyakin V.V., Budrina G.A., “Two electrons in Hubbard model”, Phys. Met. Metallogr., 61:4 (1986), 702–706

[11] Muminov M.E., “O vyrazhenii chisla sobstvennykh znachenii modeli Fridrikhsa”, Matem. zametki, 82:1 (2007), 75–83 | DOI | MR | Zbl

[12] Albeverio S., Lakaev S.N., Muminov Z.I., “The threshold effects for a family of Friedrichs models under rank one perturbations”, J. Math. Anal. Appl., 330:2 (2007), 1152–1168 | DOI | MR | Zbl

[13] Albeverio S., Lakaev S.N., Rasulov T.H., “On the spectrum of an Hamiltonian in Fock space. Discrete spectrum asymptotics”, J. Stat. Phys., 127:2 (2007), 191–220 | DOI | MR | Zbl

[14] Muminov M.I., Rasulov T.H., Tosheva N.A., “Analysis of the discrete spectrum of the family of $3 \times 3$ operator matrices”, Commun. Math. Anal., 23:1 (2020), 17–37 | MR | Zbl

[15] Rasulov T.H., Dilmurodov E.B., “Eigenvalues and virtual levels of a family of $2\times 2$ operator matrices”, Methods of Functional Anal. and Topology, 25:3 (2019), 273–281 | MR

[16] Rasulov T.H., Dilmurodov E.B., “Analysis of the spectrum of a $2\times 2$ operator matrices. Discrete spectrum asymptotics”, Nanosistemy: fizika, khimiya, matematika, 11:2 (2020), 138–144 | MR

[17] Rasulov T.Kh., Dilmurodov E.B., “Beskonechnost chisla sobstvennykh znachenii operatornykh $(2\times 2)$-matrits. Asimptotika diskretnogo spektra”, TMF, 205:3 (2020), 368–390 | DOI | MR | Zbl

[18] Rasulov T.Kh., Dilmurodov E.B., “Issledovanie chislovoi oblasti znachenii odnoi operatornoi matritsy”, Vestn. Samarsk. gos. tekh. un-ta. Ser. Fiz.-matem. nauki, 2:35 (2014), 50–63 | DOI | Zbl

[19] Rasulov T.H., Dilmurodov E.B., “Estimates for the Bounds of the Essential Spectrum of a $2\times 2$ Operator Matrix”, Contemp. Math., 1, no. 4, 2020, 170–186 | MR

[20] Reed M., Simon B., Methods of modern mathematical physics, v. IV, Analysis of operators, Academic Press, New York, 1979 | MR | Zbl