The structure of differential invariants for a free symmetry group action
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 31-40
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we consider the problem of describing the general structure of differential invariants for transformation groups that act freely and reguralry. We formulate two theorems describing the structures of differential invariants for intransitive and transitive free actions, respectively. In both cases it is shown that the differential invariants can be expressed in terms of the symbols of right-invariant vector fields. Finally, we discuss prospects for solving the problem considered for more general group actions.
Keywords:
symmetry group, differential invariant, free action.
@article{IVM_2023_6_a2,
author = {A. A. Magazev and I. V. Shirokov},
title = {The structure of differential invariants for a free symmetry group action},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {31--40},
publisher = {mathdoc},
number = {6},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_6_a2/}
}
TY - JOUR AU - A. A. Magazev AU - I. V. Shirokov TI - The structure of differential invariants for a free symmetry group action JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 31 EP - 40 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_6_a2/ LA - ru ID - IVM_2023_6_a2 ER -
A. A. Magazev; I. V. Shirokov. The structure of differential invariants for a free symmetry group action. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 31-40. http://geodesic.mathdoc.fr/item/IVM_2023_6_a2/