@article{IVM_2023_6_a2,
author = {A. A. Magazev and I. V. Shirokov},
title = {The structure of differential invariants for a free symmetry group action},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {31--40},
year = {2023},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_6_a2/}
}
A. A. Magazev; I. V. Shirokov. The structure of differential invariants for a free symmetry group action. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2023), pp. 31-40. http://geodesic.mathdoc.fr/item/IVM_2023_6_a2/
[1] Lie S., “Classification und Integration von gewöhnlichen Differentialgleichungen zwischen $xy$, die eine Gruppe von Transformationen gestatten”, Math. Ann., 32:2 (1888), 213–281 | DOI | MR
[2] Olver P. J., “Differential Invariants and Invariant Differential Equations”, Lie Groups and Their Appl., 1994, no. 1, 177–192 | MR | Zbl
[3] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[4] Olver P., Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989
[5] Fels M., Olver P. J., “Moving Coframes: I. A Practical Algorithm”, Acta Appl. Math., 51:2 (1998), 161–213 | DOI | MR
[6] Fels M., Olver P. J., “Moving coframes: II. Regularization and theoretical foundations”, Acta Appl. Math., 55:2 (1999), 127–208 | DOI | MR | Zbl
[7] Chupakhin A. P., “Differential invariants: theorem of commutativity”, Commun. in Nonlinear Sci. and Numerical Simulation, 9:1 (2004), 25–33 | DOI | MR | Zbl
[8] Gazizov R. K., Gainetdinova A. A., “Operator invariantnogo differentsirovaniya i ego primenenie dlya integrirovaniya sistem obyknovennykh differentsialnykh uravnenii”, Ufimsk. matem. zhurn., 9:4 (2017), 12–21 | MR | Zbl
[9] Shirokov I. V., “Differentsialnye invarianty gruppy preobrazovanii odnorodnogo prostranstva”, Sib. matem. zhurn., 48:6 (2007), 1405–1421 | MR | Zbl
[10] Magazev A. A., Mikheyev V. V., Shirokov I. V., “Computation of Composition Functions and Invariant Vector Fields in Terms of Structure Constants of Associated Lie Algebras”, Symmetry, Integrability and Geom.: Methods and Appl., 11 (2015), 066, 17 pp. | MR | Zbl