A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 58-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, without using neither the compactness nor the uniform convexity, some fixed point theorems are proved by using a binary relation in the setting of a new class of spaces called $T$-partial metric spaces. This class of spaces can be considered the first generalization of metric spaces such that the generated topology is a Hausdorff topology. Our theorems generalize and improve very recent fixed point results in the literature. Finally, we show the existence of a solution for a class of differential equations under new weak conditions.
Keywords: fixed point, $T$-partial metric space, uniform convexity, $T_2$ separation axiom, integral equation.
@article{IVM_2023_5_a6,
     author = {Y. Touail},
     title = {A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--70},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/}
}
TY  - JOUR
AU  - Y. Touail
TI  - A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 58
EP  - 70
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/
LA  - ru
ID  - IVM_2023_5_a6
ER  - 
%0 Journal Article
%A Y. Touail
%T A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 58-70
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/
%G ru
%F IVM_2023_5_a6
Y. Touail. A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 58-70. http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/

[1] Browder F.E., “Nonexpansive nonlinear operators in a Banach space”, Proc. Nat. Acad. Sei. U.S.A., 54:4 (1965), 1041–1044 | DOI | MR | Zbl

[2] Göhde D., “Zum Prinzip der kontraktiven Abbildung”, Math. Nachr., 30 (1965), 251–258 | DOI | MR | Zbl

[3] Kirk W.A., “A fixed point theorem for mappings which do not increase distances”, Am. Math. Mon., 72 (1965), 1004–1006 | DOI | MR | Zbl

[4] Ćirić L., Samet B., Aydi H., and Vetro C., “Common fixed points of generalized contractions on partial metric spaces and an application”, Appl. Math. Comput., 218:6 (2011), 2398–2406 | MR

[5] Heckmann R., “Approximation of metric spaces by partial metric spaces”, Appl. Categ. Struct., 7 (1999), 71–83 | DOI | MR | Zbl

[6] O' Neill S.J., “Partial metrics, valuations and domain theory”, Proc. 11th Summer Conf. General Topology and Applications, Ann. New York Acad. Sci., 806, 1997, 304–315 | DOI | MR

[7] Romaguera S., Schellekens M., “Partial metric monoids and semivaluation spaces”, Topol. Appl., 153:5–6 (2005), 948–962 | DOI | MR | Zbl

[8] Romaguera S., Valero O., “A quantitative computational model for complete partial metric spaces via formal balls”, Math. Struct. Comput. Sci., 19:3 (2009), 541–563 | DOI | MR | Zbl

[9] Schellekens M.P., “The correspondence between partial metrics and semivaluations”, Theoret. Comput. Sci., 315:1 (2004), 135–149 | DOI | MR | Zbl

[10] Waszkiewicz P., “Partial metrisability of continuous posets”, Math. Struct. Comput. Sci., 16:2 (2006), 359–372 | DOI | MR | Zbl

[11] Matthews S.G., “Partial metric topology”, Proc. 8th Summer Conf. on General Topology and Applications, Ann. NewYork Acad. Sci., 728, 1994, 183–197 | DOI | MR | Zbl

[12] Aamri M., El Moutawakil D., “$\tau$-distance in general topological spaces $(X,\tau)$ with application to fixed point theory”, Southwest J. Pure Appl. Math. (2), 2003, 1–5 | MR

[13] Touail Y., El Moutawakil D., Bennani S., “Fixed Point theorems for contractive selfmappings of a bounded metric space”, J. Funct. Spac., 2019 (2019), 4175807 | MR | Zbl

[14] Touail Y., El Moutawakil D., “Fixed point results for new type of multivalued mappings in bounded metric spaces with an application”, Ricerche Mat., 71 (2022), 315–323 | DOI | MR

[15] Touail Y., El Moutawakil D., “New common fixed point theorems for contractive self mappings and an application to nonlinear differential equations”, Int. J. Nonlinear Anal. Appl., 12:1 (2021), 903–911 | MR

[16] Touail Y., El Moutawakil D., “Fixed point theorems for new contractions with application in dynamic programming”, Vestnik St. Petersb. Univ. Math., 54 (2021), 206–212 | DOI | MR | Zbl

[17] Touail Y., El Moutawakil D., “Some new common fixed point theorems for contractive selfmappings with applications”, Asian.-Eur. J. Math., 15:4 (2022), 2250080 | DOI | MR | Zbl

[18] Touail Y., El Moutawakil D., “Fixed point theorems on orthogonal complete metric spaces with an application”, Int. J. Nonl. Anal. Appl., 12:2 (2021), 1801–1809 | MR

[19] Touail Y., Jaid A., El Moutawakil D., “New contribution in fixed point theory via an auxiliary function with an application”, Ricerche Mat., 2021 | MR | Zbl

[20] Touail Y., Jaid A. and El Moutawakil D., “Fixed Point Results for Condensing Operators via Measure of Non-Compactness”, Vestnik St. Petersb. Univ. Math., 55 (2022), 347–352 | DOI | MR

[21] Ran A.C.M., Reuring M.C.B., “A fixed point theorem in partially ordered sets and some applications to matrix equations”, Proc. Amer. Math. Soc., 132 (2004), 1435–1443 | DOI | MR | Zbl

[22] Touail Y., El Moutawakil D., “$\perp_{\psi F}$-contractions and some fixed point results on generalized orthogonal sets”, Rend. Circ. Mat. Palermo, II, 70 (2021), 1459–1472 | DOI | MR

[23] Touail Y., “On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions”, Probl. anal. Issues Anal., 11 (29):3 (2022), 109–124 | MR

[24] Clarkson J.A., “Uniformly convex spaces”, Trans. Amer. Math. Soc., 40 (1936), 396–414 | DOI | MR | Zbl