Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_5_a6, author = {Y. Touail}, title = {A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {58--70}, publisher = {mathdoc}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/} }
TY - JOUR AU - Y. Touail TI - A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 58 EP - 70 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/ LA - ru ID - IVM_2023_5_a6 ER -
%0 Journal Article %A Y. Touail %T A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 58-70 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/ %G ru %F IVM_2023_5_a6
Y. Touail. A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 58-70. http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/
[1] Browder F.E., “Nonexpansive nonlinear operators in a Banach space”, Proc. Nat. Acad. Sei. U.S.A., 54:4 (1965), 1041–1044 | DOI | MR | Zbl
[2] Göhde D., “Zum Prinzip der kontraktiven Abbildung”, Math. Nachr., 30 (1965), 251–258 | DOI | MR | Zbl
[3] Kirk W.A., “A fixed point theorem for mappings which do not increase distances”, Am. Math. Mon., 72 (1965), 1004–1006 | DOI | MR | Zbl
[4] Ćirić L., Samet B., Aydi H., and Vetro C., “Common fixed points of generalized contractions on partial metric spaces and an application”, Appl. Math. Comput., 218:6 (2011), 2398–2406 | MR
[5] Heckmann R., “Approximation of metric spaces by partial metric spaces”, Appl. Categ. Struct., 7 (1999), 71–83 | DOI | MR | Zbl
[6] O' Neill S.J., “Partial metrics, valuations and domain theory”, Proc. 11th Summer Conf. General Topology and Applications, Ann. New York Acad. Sci., 806, 1997, 304–315 | DOI | MR
[7] Romaguera S., Schellekens M., “Partial metric monoids and semivaluation spaces”, Topol. Appl., 153:5–6 (2005), 948–962 | DOI | MR | Zbl
[8] Romaguera S., Valero O., “A quantitative computational model for complete partial metric spaces via formal balls”, Math. Struct. Comput. Sci., 19:3 (2009), 541–563 | DOI | MR | Zbl
[9] Schellekens M.P., “The correspondence between partial metrics and semivaluations”, Theoret. Comput. Sci., 315:1 (2004), 135–149 | DOI | MR | Zbl
[10] Waszkiewicz P., “Partial metrisability of continuous posets”, Math. Struct. Comput. Sci., 16:2 (2006), 359–372 | DOI | MR | Zbl
[11] Matthews S.G., “Partial metric topology”, Proc. 8th Summer Conf. on General Topology and Applications, Ann. NewYork Acad. Sci., 728, 1994, 183–197 | DOI | MR | Zbl
[12] Aamri M., El Moutawakil D., “$\tau$-distance in general topological spaces $(X,\tau)$ with application to fixed point theory”, Southwest J. Pure Appl. Math. (2), 2003, 1–5 | MR
[13] Touail Y., El Moutawakil D., Bennani S., “Fixed Point theorems for contractive selfmappings of a bounded metric space”, J. Funct. Spac., 2019 (2019), 4175807 | MR | Zbl
[14] Touail Y., El Moutawakil D., “Fixed point results for new type of multivalued mappings in bounded metric spaces with an application”, Ricerche Mat., 71 (2022), 315–323 | DOI | MR
[15] Touail Y., El Moutawakil D., “New common fixed point theorems for contractive self mappings and an application to nonlinear differential equations”, Int. J. Nonlinear Anal. Appl., 12:1 (2021), 903–911 | MR
[16] Touail Y., El Moutawakil D., “Fixed point theorems for new contractions with application in dynamic programming”, Vestnik St. Petersb. Univ. Math., 54 (2021), 206–212 | DOI | MR | Zbl
[17] Touail Y., El Moutawakil D., “Some new common fixed point theorems for contractive selfmappings with applications”, Asian.-Eur. J. Math., 15:4 (2022), 2250080 | DOI | MR | Zbl
[18] Touail Y., El Moutawakil D., “Fixed point theorems on orthogonal complete metric spaces with an application”, Int. J. Nonl. Anal. Appl., 12:2 (2021), 1801–1809 | MR
[19] Touail Y., Jaid A., El Moutawakil D., “New contribution in fixed point theory via an auxiliary function with an application”, Ricerche Mat., 2021 | MR | Zbl
[20] Touail Y., Jaid A. and El Moutawakil D., “Fixed Point Results for Condensing Operators via Measure of Non-Compactness”, Vestnik St. Petersb. Univ. Math., 55 (2022), 347–352 | DOI | MR
[21] Ran A.C.M., Reuring M.C.B., “A fixed point theorem in partially ordered sets and some applications to matrix equations”, Proc. Amer. Math. Soc., 132 (2004), 1435–1443 | DOI | MR | Zbl
[22] Touail Y., El Moutawakil D., “$\perp_{\psi F}$-contractions and some fixed point results on generalized orthogonal sets”, Rend. Circ. Mat. Palermo, II, 70 (2021), 1459–1472 | DOI | MR
[23] Touail Y., “On multivalued $\perp_{\psi F}$-contractions on generalized orthogonal sets with an application to integral inclusions”, Probl. anal. Issues Anal., 11 (29):3 (2022), 109–124 | MR
[24] Clarkson J.A., “Uniformly convex spaces”, Trans. Amer. Math. Soc., 40 (1936), 396–414 | DOI | MR | Zbl