A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 58-70
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, without using neither the compactness nor the uniform convexity, some fixed point theorems are proved by using a binary relation in the setting of a new class of spaces called $T$-partial metric spaces. This class of spaces can be considered the first generalization of metric spaces such that the generated topology is a Hausdorff topology. Our theorems generalize and improve very recent fixed point results in the literature. Finally, we show the existence of a solution for a class of differential equations under new weak conditions.
Keywords:
fixed point, $T$-partial metric space, uniform convexity, $T_2$ separation axiom, integral equation.
@article{IVM_2023_5_a6,
author = {Y. Touail},
title = {A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {58--70},
publisher = {mathdoc},
number = {5},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/}
}
TY - JOUR AU - Y. Touail TI - A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 58 EP - 70 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/ LA - ru ID - IVM_2023_5_a6 ER -
%0 Journal Article %A Y. Touail %T A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 58-70 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/ %G ru %F IVM_2023_5_a6
Y. Touail. A new generalization of metric spaces satisfying the $T_2$-separation axiom and some related fixed point results. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 58-70. http://geodesic.mathdoc.fr/item/IVM_2023_5_a6/