Exact regions of mutual variation of coefficients of holomorphic self-maps of a disc with fixed points
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 48-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is proposed that allows us to obtain the exact regions of mutual variation of Taylor coefficients of holomorphic self-maps of a disc with an interior fixed point and an arbitrary finite set of different boundary fixed points. Based on this method, exact inequalities for the first and second coefficients are obtained.
Keywords: holomorphic mapping, fixed points, angular derivative
Mots-clés : coefficient regions.
@article{IVM_2023_5_a5,
     author = {O. S. Kudryavtseva},
     title = {Exact regions of mutual variation of coefficients of holomorphic self-maps of a disc with fixed points},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {48--57},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a5/}
}
TY  - JOUR
AU  - O. S. Kudryavtseva
TI  - Exact regions of mutual variation of coefficients of holomorphic self-maps of a disc with fixed points
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 48
EP  - 57
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_5_a5/
LA  - ru
ID  - IVM_2023_5_a5
ER  - 
%0 Journal Article
%A O. S. Kudryavtseva
%T Exact regions of mutual variation of coefficients of holomorphic self-maps of a disc with fixed points
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 48-57
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_5_a5/
%G ru
%F IVM_2023_5_a5
O. S. Kudryavtseva. Exact regions of mutual variation of coefficients of holomorphic self-maps of a disc with fixed points. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 48-57. http://geodesic.mathdoc.fr/item/IVM_2023_5_a5/

[1] Schur I., “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 147 (1917), 205–232 | DOI | MR

[2] Goluzin G.M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[3] Ahlfors L.V., Conformal invariants: Topics in geometric function theory, McGraw-Hill, New York, 1973 | MR | Zbl

[4] Kudryavtseva O.S., “Lemma Shvartsa i otsenki koeffitsientov v sluchae proizvolnogo nabora granichnykh nepodvizhnykh tochek”, Matem. zametki, 109:4 (2021), 636–640 | DOI | Zbl

[5] Cowen C.C., Pommerenke Ch., “Inequalities for the angular derivative of an analytic function in the unit disk”, J. London Math. Soc., 26:2 (1982), 271–289 | DOI | MR | Zbl

[6] Goryainov V.V., “Golomorfnye otobrazheniya edinichnogo kruga v sebya s dvumya nepodvizhnymi tochkami”, Matem. sb., 208:3 (2017), 54–71 | DOI | MR | Zbl

[7] Kudryavtseva O.S., “Neravenstvo tipa Shvartsa dlya golomorfnykh otobrazhenii kruga v sebya s nepodvizhnymi tochkami”, Izv. vuzov. Matem., 2021, no. 7, 43–51 | Zbl

[8] Dubinin V.N., Kim V.Yu., “Teoremy iskazheniya dlya regulyarnykh i ogranichennykh v kruge funktsii”, Zap. nauchn. sem. POMI, 350, 2007, 26–39

[9] Poltoratski A., Sarason D., “Aleksandrov–Clark measures”, Contemp. Math., 393, 2006, 1–14 | DOI | MR | Zbl