Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 41-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the known formula for determining the jump of a periodic function using the derivative of the partial sums of its Fourier series extends to a new class of functions.
Keywords: jump of a function, Fourier series.
Mots-clés : harmonic variation
@article{IVM_2023_5_a4,
     author = {A. A. Kelzon},
     title = {Determination of the jump of a function of $m$-harmonic bounded variation by its {Fourier} series},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--47},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/}
}
TY  - JOUR
AU  - A. A. Kelzon
TI  - Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 41
EP  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/
LA  - ru
ID  - IVM_2023_5_a4
ER  - 
%0 Journal Article
%A A. A. Kelzon
%T Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 41-47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/
%G ru
%F IVM_2023_5_a4
A. A. Kelzon. Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 41-47. http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/

[1] Kelzon A.A., “O funktsiyakh $(m,\Phi )$-ogranichennoi variatsii”, Dokl. AN SSSR, 321:4 (1991), 670–672 | Zbl

[2] Kelzon A.A., “Funktsii $(m,\Phi )$-ogranichennoi variatsii i skhodimost ryadov Fure”, Izv. vuzov. Matem., 1994, no. 8, 29–38 | MR | Zbl

[3] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia Math., 44:2 (1972), 107–117 | DOI | MR | Zbl

[4] Avdispahić M., “On the determination of the jump of a function by its Fourier series”, Acta Math. Hungar., 48:3–4 (1986), 267–271 | DOI | MR | Zbl

[5] Kvernadze G., “Determination of the jumps of a bounded function by its Fourier series”, J. Approx. Theory, 92:2 (1998), 167–190 | DOI | MR | Zbl

[6] Fejér L., “Über die Bestimmung des Sprunges der Funktion aus Fourier-reihe”, J. Reine Angew. Math., 142:1 (1912), 165–188 | MR

[7] Czillag P., “Über die Fourierkonstanten einer Funktion von Beschränkter Schwankung”, Mat. Phys. Lapok, 27 (1918), 301–308

[8] Golubov B. I., “Opredelenie skachka funktsii ogranichennoi $p$-variatsii po ee ryadu Fure”, Matem. zametki, 12:1 (1972), 19–28 | Zbl

[9] Kelzon A. A., “Ob opredelenii skachka funktsii obobschennoi ogranichennoi variatsii cherez proizvodnye ot chastnykh summ ee ryada Fure”, Matem. zametki, 99:1 (2016), 35–41 | DOI | MR | Zbl

[10] Fikhtengolts G.M., Kurs differentsialnogo i integralnogo ischisleniya, v. 2, Lan, SPb., 1997

[11] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[12] Natanson I.P., Konstruktivnaya teoriya funktsii, GITTL, M., 1949 | MR