Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 41-47

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the known formula for determining the jump of a periodic function using the derivative of the partial sums of its Fourier series extends to a new class of functions.
Keywords: jump of a function, Fourier series.
Mots-clés : harmonic variation
@article{IVM_2023_5_a4,
     author = {A. A. Kelzon},
     title = {Determination of the jump of a function of $m$-harmonic bounded variation by its {Fourier} series},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {41--47},
     publisher = {mathdoc},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/}
}
TY  - JOUR
AU  - A. A. Kelzon
TI  - Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 41
EP  - 47
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/
LA  - ru
ID  - IVM_2023_5_a4
ER  - 
%0 Journal Article
%A A. A. Kelzon
%T Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 41-47
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/
%G ru
%F IVM_2023_5_a4
A. A. Kelzon. Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 41-47. http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/