Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 41-47
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the known formula for determining the jump of a periodic function using the derivative of the partial sums of its Fourier series extends to a new class of functions.
Keywords:
jump of a function, Fourier series.
Mots-clés : harmonic variation
Mots-clés : harmonic variation
@article{IVM_2023_5_a4,
author = {A. A. Kelzon},
title = {Determination of the jump of a function of $m$-harmonic bounded variation by its {Fourier} series},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {41--47},
publisher = {mathdoc},
number = {5},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/}
}
TY - JOUR AU - A. A. Kelzon TI - Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 41 EP - 47 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/ LA - ru ID - IVM_2023_5_a4 ER -
A. A. Kelzon. Determination of the jump of a function of $m$-harmonic bounded variation by its Fourier series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2023), pp. 41-47. http://geodesic.mathdoc.fr/item/IVM_2023_5_a4/