Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_4_a1, author = {S. Demir}, title = {Square function characterizations of real and ergodic $H^1$ spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {15--26}, publisher = {mathdoc}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a1/} }
S. Demir. Square function characterizations of real and ergodic $H^1$ spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 15-26. http://geodesic.mathdoc.fr/item/IVM_2023_4_a1/
[1] Burkholder D.L., “Martingale transforms”, Ann. Math. Stat., 37:6 (1966), 1494–1504 | DOI | MR | Zbl
[2] Davis B., “On the integrability of the martingale square function”, Israel J. Math., 8 (1970), 187–190 | DOI | MR | Zbl
[3] Jones R.L., Rosenblatt J.M., “Reverse inequalities”, J. Fourier Anal. and Appl., 6:3 (2000), 325–341 | DOI | MR | Zbl
[4] Demir S., $H^p$ Spaces and Inequalities in Ergodic Theory, Ph.D. Thesis, Univ. Illionis at Urbana-Champaign, May 1999 | MR | Zbl
[5] Caballero R., de la Torre A., “An atomic theory of ergodic $H^p$ spaces”, Studia Math., 82 (1985), 39–69 | DOI | MR
[6] Petersen K.E., Ergodic Theory, Cambridge Univ. Press, Cambridge, 1983 | MR | Zbl
[7] Demir S., “A Generalizaition of Calderón Transfer Principle”, J. Comput. Math. Sci., 9:5 (2018), 325–329
[8] Demir S., “Integrability of ergodic square function”, Universal J. Math. and Math. Sci., 11:2 (2018), 77–89 | DOI | MR | Zbl
[9] Ornstein D., “A remark on the Birkhoff ergodic theorem”, Illinois J. Math., 15:1 (1971), 77–79 | MR | Zbl