Square function characterizations of real and ergodic $H^1$ spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 15-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(n_k)$ be a lacunary sequence with no non-trivial common divisor and $f\in L^1(\mathbb{R})$. Define the square function $$Sf(x)=\left(\sum_{k=1}^{\infty}\left|\frac{1}{n_{k+1}}\int_{0}^{n_{k+1}}f(x-t) dt-\frac{1}{n_k}\int_{0}^{n_k}f(x-t) dt\right|^2\right)^{1/2}.$$ We show that there exist constants $A$ and $B$ such that $$\|f\|_{L^1(\mathbb{R})}\leq A\|Sf\|_{L^1(\mathbb{R})} \text{and} \|f\|_{H^1(\mathbb{R})}\leq B\|Sf\|_{L^1(\mathbb{R})}$$ for all $f\in L^1(\mathbb{R})$.\Let $(X,\mathscr{B} ,\mu ,\tau )$ be an ergodic, measure preserving dynamical system with $(X,\mathscr{B} ,\mu )$ a totally $\sigma$-finite measure space. Let us consider the usual ergodic averages $$A_nf(x)=\frac{1}{n}\sum_{i=0}^{n-1}f(\tau^ix),$$ and define the ergodic square function $$\mathcal{S}f(x)=\left(\sum_{k=1}^{\infty}\left|A_{n_{k+1}}f(x)-A_{n_k}f(x)\right|^2\right)^{1/2}.$$ We also show that $$\|f\|_{L^1(X)}\leq A\|\mathcal{S}f\|_{L^1(X)} \text{and} \|f\|_{H^1(X)}\leq B\|\mathcal{S}f\|_{L^1(X)}$$ for all $f\in L^1(X)$, where $H^1(X)$ denotes the ergodic Hardy space. Combining these results with the author's earlier results we also conclude that the square function $Sf$ characterizes the real Hardy space $H^1(\mathbb{R})$, and the ergodic square function $\mathcal{S}f$ characterizes the ergodic Hardy space $H^1(X)$ when the sequence $(n_k)$ is lacunary.
Keywords: ergodic square function, Hardy space, $H^1$ space, ergodic Hardy space, ergodic $H^1$ space, ergodic average, characterization.
@article{IVM_2023_4_a1,
     author = {S. Demir},
     title = {Square function characterizations of real and ergodic $H^1$ spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--26},
     publisher = {mathdoc},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_4_a1/}
}
TY  - JOUR
AU  - S. Demir
TI  - Square function characterizations of real and ergodic $H^1$ spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 15
EP  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_4_a1/
LA  - ru
ID  - IVM_2023_4_a1
ER  - 
%0 Journal Article
%A S. Demir
%T Square function characterizations of real and ergodic $H^1$ spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 15-26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_4_a1/
%G ru
%F IVM_2023_4_a1
S. Demir. Square function characterizations of real and ergodic $H^1$ spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2023), pp. 15-26. http://geodesic.mathdoc.fr/item/IVM_2023_4_a1/

[1] Burkholder D.L., “Martingale transforms”, Ann. Math. Stat., 37:6 (1966), 1494–1504 | DOI | MR | Zbl

[2] Davis B., “On the integrability of the martingale square function”, Israel J. Math., 8 (1970), 187–190 | DOI | MR | Zbl

[3] Jones R.L., Rosenblatt J.M., “Reverse inequalities”, J. Fourier Anal. and Appl., 6:3 (2000), 325–341 | DOI | MR | Zbl

[4] Demir S., $H^p$ Spaces and Inequalities in Ergodic Theory, Ph.D. Thesis, Univ. Illionis at Urbana-Champaign, May 1999 | MR | Zbl

[5] Caballero R., de la Torre A., “An atomic theory of ergodic $H^p$ spaces”, Studia Math., 82 (1985), 39–69 | DOI | MR

[6] Petersen K.E., Ergodic Theory, Cambridge Univ. Press, Cambridge, 1983 | MR | Zbl

[7] Demir S., “A Generalizaition of Calderón Transfer Principle”, J. Comput. Math. Sci., 9:5 (2018), 325–329

[8] Demir S., “Integrability of ergodic square function”, Universal J. Math. and Math. Sci., 11:2 (2018), 77–89 | DOI | MR | Zbl

[9] Ornstein D., “A remark on the Birkhoff ergodic theorem”, Illinois J. Math., 15:1 (1971), 77–79 | MR | Zbl