Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_3_a4, author = {S. Demir}, title = {Oscillation inequalities on real and ergodic $H^1$ spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {52--62}, publisher = {mathdoc}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_3_a4/} }
S. Demir. Oscillation inequalities on real and ergodic $H^1$ spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 52-62. http://geodesic.mathdoc.fr/item/IVM_2023_3_a4/
[1] Gaposhkin V.F., “A theorem on the convergence almost everywhere of a sequence of measurable functions, and its applications to sequences of stochastic integrals”, Math. USSR-Sbornik, 33 (1977), 1–17 | DOI | MR | Zbl
[2] Gaposhkin V.F., “Individual ergodic theorem for normal operators on $L^2$”, Funct. Anal. Appl., 15 (1981), 14–18 | DOI | MR | Zbl
[3] Jones R.L., Kaufman R., Rosenblatt J.M., Máté Wierdl, “Oscillation in ergodic theory”, Ergodic Th. and Dynam. Syst., 18 (1998), 889–935 | DOI | MR | Zbl
[4] Demir S., “A generalizaition of Calderón transfer principle”, J. Comput. Math. Sci., 9:5 (2018), 325–329
[5] Caballero R., de la Torre A., “An atomic theory of ergodic $H^p$ spaces”, Studia Math., 82:1 (1985), 39–59 | DOI | MR | Zbl
[6] Ornstein D., “A remark on the Birkoff ergodic theorem”, Illin. J. Math., 15 (1971), 77–79 | MR | Zbl
[7] Demir S., $H^p$ spaces and inequalities in ergodic theory, Ph.D. Thesis, University of Illionis at Urbana-Champaign, May 1999 | MR | Zbl