Oscillation inequalities on real and ergodic $H^1$ spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 52-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(x_n)$ be a sequence and $\rho\geq 1$. For a fixed sequences $n_1$, and $M$ define the oscillation operator $$\mathcal{O}_\rho (x_n)=\left(\sum_{k=1}^\infty\sup_{\substack{n_k\leq m n_{k+1}\\ m\in M}}\left|x_m-x_{n_k}\right|^\rho\right)^{1/\rho}.$$ Let $(X,\mathscr{B} ,\mu , \tau)$ be a dynamical system with $(X,\mathscr{B} ,\mu )$ a probability space and $\tau$ a measurable, invertible, measure preserving point transformation from $X$ to itself. Suppose that the sequences $(n_k)$ and $M$ are lacunary. Then we prove the following results for $\rho\geq 2$. Define $\phi_n(x)=\dfrac{1}{n}\chi_{[0,n]}(x)$ on $\mathbb{R}$. Then there exists a constant $C>0$ such that $$\|\mathcal{O}_\rho (\phi_n\ast f)\|_{L^1(\mathbb{R})}\leq C\|f\|_{H^1(\mathbb{R})}$$ for all $f\in H^1(\mathbb{R})$. Let $$A_nf(x)=\frac{1}{n}\sum_{k=1}^nf(\tau^kx)$$ be the usual ergodic averages in ergodic theory. Then $$\|\mathcal{O}_\rho (A_nf)\|_{L^1(X)}\leq C\|f\|_{H^1(X)}$$ for all $f\in H^1(X)$. If $[f(x)\log (x)]^+$ is integrable, then $\mathcal{O}_\rho (A_nf)$ is integrable.
Keywords: oscillation operator, Hardy space, $H^1$ space, ergodic Hardy space, ergodic $H^1$ space, ergodic average.
@article{IVM_2023_3_a4,
     author = {S. Demir},
     title = {Oscillation inequalities on real and ergodic $H^1$ spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--62},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_3_a4/}
}
TY  - JOUR
AU  - S. Demir
TI  - Oscillation inequalities on real and ergodic $H^1$ spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 52
EP  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_3_a4/
LA  - ru
ID  - IVM_2023_3_a4
ER  - 
%0 Journal Article
%A S. Demir
%T Oscillation inequalities on real and ergodic $H^1$ spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 52-62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_3_a4/
%G ru
%F IVM_2023_3_a4
S. Demir. Oscillation inequalities on real and ergodic $H^1$ spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 52-62. http://geodesic.mathdoc.fr/item/IVM_2023_3_a4/

[1] Gaposhkin V.F., “A theorem on the convergence almost everywhere of a sequence of measurable functions, and its applications to sequences of stochastic integrals”, Math. USSR-Sbornik, 33 (1977), 1–17 | DOI | MR | Zbl

[2] Gaposhkin V.F., “Individual ergodic theorem for normal operators on $L^2$”, Funct. Anal. Appl., 15 (1981), 14–18 | DOI | MR | Zbl

[3] Jones R.L., Kaufman R., Rosenblatt J.M., Máté Wierdl, “Oscillation in ergodic theory”, Ergodic Th. and Dynam. Syst., 18 (1998), 889–935 | DOI | MR | Zbl

[4] Demir S., “A generalizaition of Calderón transfer principle”, J. Comput. Math. Sci., 9:5 (2018), 325–329

[5] Caballero R., de la Torre A., “An atomic theory of ergodic $H^p$ spaces”, Studia Math., 82:1 (1985), 39–59 | DOI | MR | Zbl

[6] Ornstein D., “A remark on the Birkoff ergodic theorem”, Illin. J. Math., 15 (1971), 77–79 | MR | Zbl

[7] Demir S., $H^p$ spaces and inequalities in ergodic theory, Ph.D. Thesis, University of Illionis at Urbana-Champaign, May 1999 | MR | Zbl