Projection method for a class of integral operators with bihomogeneous kernels
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 3-11

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the multidimensional integral operators with bihomogeneous kernels in the $L_2$–space. For such operators, the necessary and sufficient conditions for invertibility is obtained. The main result of the article is the applicability criterion of the projection method to a given class of operators with biohomogeneous kernels.
Keywords: integral operator, homogeneous kernel, invertibility, projection method, $C^*$-algebra.
@article{IVM_2023_3_a0,
     author = {O. G. Avsyankin},
     title = {Projection method for a class of integral operators with bihomogeneous kernels},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_3_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - Projection method for a class of integral operators with bihomogeneous kernels
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 11
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_3_a0/
LA  - ru
ID  - IVM_2023_3_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T Projection method for a class of integral operators with bihomogeneous kernels
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-11
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_3_a0/
%G ru
%F IVM_2023_3_a0
O. G. Avsyankin. Projection method for a class of integral operators with bihomogeneous kernels. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2023), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2023_3_a0/