Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_2_a5, author = {I. V. Rakhmelevich}, title = {Non-autonomous evolutionary equation of {Monge--Ampere} type with two space variables}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {66--80}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_2_a5/} }
TY - JOUR AU - I. V. Rakhmelevich TI - Non-autonomous evolutionary equation of Monge--Ampere type with two space variables JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 66 EP - 80 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_2_a5/ LA - ru ID - IVM_2023_2_a5 ER -
I. V. Rakhmelevich. Non-autonomous evolutionary equation of Monge--Ampere type with two space variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 66-80. http://geodesic.mathdoc.fr/item/IVM_2023_2_a5/
[1] Polyanin A.D., Zaitsev V.F., Handbook of Nonlinear Partial Differential Equations, 2nd edition, Chapman and Hall-CRC Press, Boca Raton–London, 2012
[2] Rozhdestvenskii B.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1978
[3] Khabirov S.V., “Neizentropicheskie odnomernye dvizheniya gaza, postroennye s pomoschyu kontaktnoi gruppy neodnorodnogo uravneniya Monzha–Ampera”, Matem. sb., 181:12 (1990), 1607–1622
[4] Shablovskii O.N., “Parametricheskie resheniya uravneniya Monzha–Ampera i techeniya gaza s peremennoi entropiei”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 1:33 (2015), 105–118
[5] Pogorelov A.V., Mnogomernoe uravnenie Monzha–Ampera, Nauka, M., 1988
[6] Ibragimov N.H. (ed.), CRC Handbook of Lie Groups to Differential Equations, v. 1, Symmetries, Exact Solutions and Conservation Laws, CRC Press, Boca Raton, 1994
[7] Rakhmelevich I.V., “O resheniyakh dvumernogo uravneniya Monzha–Ampera so stepennoi nelineinostyu po pervym proizvodnym”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 4:42 (2016), 33–43
[8] Rakhmelevich I.V., “Modifitsirovannoe dvumernoe uravnenie Monzh–Ampera”, Vestn. Voronezhsk. gos. un-ta. Ser. Fizika. Matem., 2017, no. 3, 159–168
[9] Rakhmelevich I.V., “Mnogomernoe uravnenie Monzha–Ampera so stepennymi nelineinostyami po pervym proizvodnym”, Vestn. Voronezhsk. gos. un-ta. Ser. Fizika. Matem., 2020, no. 2, 86–98
[10] Galaktionov V. A., Svirshchevskii S.R., Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics, Chapman and Hall/CRC Press, Boca Raton, 2006
[11] Gutiérres C.E., The Monge–Ampère Equation, Birkhäuser, Boston, 2001
[12] Taylor M.E., Partial Differential Equations, v. III, Nonlinear Equations, Springer-Verlag, New York, 1996
[13] Leibov O., “Reduction and Exact Solutions of the Monge-Ampere Equation”, Nonlinear Math. Phys., 4:1–2 (1997), 146–148
[14] Fedorchuk V.M., Leibov O.S., “Symmetry reduction and exact solutions of the multidimensional Monge-Ampere equation”, Ukr. Math. J., 48:5 (1996), 775–783
[15] Fushchych W.I., “The symmetry and exact solutions of some multidimensional nonlinear equations of mathematical physics”, Sci. Works, 3 (2001), 175–179
[16] Chou K.-S., Wang X.-J., “A logarithmic Gauss curvature flow and the Minkowski Problem”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17:6 (2000), 733–751
[17] Polyanin A.D., Zhurov A.I., Metody razdeleniya peremennykh i tochnye resheniya nelineinykh uravnenii matematicheskoi fiziki, Izd-vo IPMekh RAN, M., 2020