Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_2_a1, author = {E.M. Vechtomov and V. V. Chermnykh}, title = {Lambek functional representation of generalized symmetric semirings}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {26--35}, publisher = {mathdoc}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_2_a1/} }
TY - JOUR AU - E.M. Vechtomov AU - V. V. Chermnykh TI - Lambek functional representation of generalized symmetric semirings JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 26 EP - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_2_a1/ LA - ru ID - IVM_2023_2_a1 ER -
E.M. Vechtomov; V. V. Chermnykh. Lambek functional representation of generalized symmetric semirings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2023), pp. 26-35. http://geodesic.mathdoc.fr/item/IVM_2023_2_a1/
[1] Golan J.S., Semirings and their applications, Kluwer Academic Publ., Dordrecht, Boston, 1999
[2] Grothendieck A., Dieudonné J.A., Éléments de Géométrie Algébrique, v. 1, Publ. Math., 4, Inst. Hautes Etudes Sci., Paris, 1960
[3] Lambek J., Lectures on rings and modules, Blaisdell Publ. Company, New York, 1966
[4] Vechtomov E.M., “Rings and sheaves”, J. Math. Sci., 74:1 (1995), 749–798
[5] Dauns J., Hofmann K.H., “The representation of biregular rings by sheaves”, Math. Z., 12:4 (1968), 3–24
[6] Koh K., “On functional representation of ring without nilpotent elements”, Can. Math. Bull., 14:3 (1971), 349–352
[7] Koh K., “On a representation of strongly harmonic ring by sheaves”, Pacif J. Math., 41:2 (1972), 459–468
[8] Hofmann K.H., “Representations of algebras by continuons sections”, Bull. Amer. Math. Soc., 78:3 (1972), 291–373
[9] Mulvey C.J., “A generalization of Gelfand duality”, J. Algebra, 56:2 (1979), 499–505
[10] Chermnykh V.V., “Puchkovye predstavleniya polukolets”, UMN, 48:5 (1993), 185–186
[11] Chermnykh V.V., “Funktsionalnye predstavleniya polukolets”, Fundament. i prikl. matem., 17:3 (2012), 111–227
[12] Lambek J., “On the Representation of Modules by Sheaves of Factor Modules”, Can. Math. Bull., 14:3 (1971), 359–368
[13] Shin G., “Prime ideals and sheaf representation of a pseudo symmetric ring”, Trans. Amer. Math. Soc., 184 (1973), 43–60
[14] Burgess W.D., Stephenson W., “Pierce sheaves of non-commutative rings”, Comm. Algebra, 4:1 (1976), 51–75
[15] Burgess W.D., Stephenson W., “An analogue of the Pierce sheaf for noncommutative rings”, Comm. Algebra, 6:9 (1978), 863–886
[16] Bredon G., Teoriya puchkov, Nauka, M., 1988