On the spectrum of a quasidifferential boundary value problem of the second order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2023), pp. 3-24

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of the spectrum of a quasidifferential boundary value problem of the second order is studied, i.e. $(_{P}^{ 2}x)(t)=-\lambda( _{P}^{ 0}x)(t) (t\in[a,b], \lambda \in {\mathbb R})$ (the coefficients in the equation are real valued functions) with given homogeneous boundary conditions at the ends of this segment, i.e. ${ }_P^{ 0}x(a)={ }_P^{ 0}x(b)=0.$ First, we consider the auxiliary Cauchy problem with the real parameter $\beta$ in the coefficient $p_{20}(t)$ of the equation, namely, $p_{22}(t) \left(p_{11}(t)v'(t) \right)' +(p_{20}(t)+\beta)v(t)=0,$ $ v(a)=0, p_{11}(a)v'(a)=1.$ In terms of the solution to this problem, a fundamental theorem on the continuous or discrete real spectrum of the boundary value problem is formulated (see Theorem 1). Examples are given to illustrate the cases of the continuous spectrum and discrete spectrum for the boundary value problem under consideration.
Keywords: quasiderivatives, quasidifferential equation, two-point quasidifferential boundary value problem, Cauchy problem, real parameter, sequence of solutions, sum of series, eigenvalue, eigenfunction, spectrum of boundary value problem, discrete spectrum, continuous spectrum, root of equation, Taylor series.
@article{IVM_2023_1_a0,
     author = {M. Yu. Vatolkin},
     title = {On the spectrum of a quasidifferential boundary value problem of the second order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--24},
     publisher = {mathdoc},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_1_a0/}
}
TY  - JOUR
AU  - M. Yu. Vatolkin
TI  - On the spectrum of a quasidifferential boundary value problem of the second order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_1_a0/
LA  - ru
ID  - IVM_2023_1_a0
ER  - 
%0 Journal Article
%A M. Yu. Vatolkin
%T On the spectrum of a quasidifferential boundary value problem of the second order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_1_a0/
%G ru
%F IVM_2023_1_a0
M. Yu. Vatolkin. On the spectrum of a quasidifferential boundary value problem of the second order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2023), pp. 3-24. http://geodesic.mathdoc.fr/item/IVM_2023_1_a0/