Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_12_a7, author = {N. Temirgaliyev and Sh. K. Abikenova and Sh. U. Azhgaliev and Ye. Ye. Nurmoldin and G. E. Taugynbayeva and A. Zh. Zhubanysheva}, title = {Equivalence of computed tomography problem with the problem of recovery of functions by finite convolutions in a scheme of computational (numerical) diameter}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {95--102}, publisher = {mathdoc}, number = {12}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a7/} }
TY - JOUR AU - N. Temirgaliyev AU - Sh. K. Abikenova AU - Sh. U. Azhgaliev AU - Ye. Ye. Nurmoldin AU - G. E. Taugynbayeva AU - A. Zh. Zhubanysheva TI - Equivalence of computed tomography problem with the problem of recovery of functions by finite convolutions in a scheme of computational (numerical) diameter JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 95 EP - 102 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_12_a7/ LA - ru ID - IVM_2023_12_a7 ER -
%0 Journal Article %A N. Temirgaliyev %A Sh. K. Abikenova %A Sh. U. Azhgaliev %A Ye. Ye. Nurmoldin %A G. E. Taugynbayeva %A A. Zh. Zhubanysheva %T Equivalence of computed tomography problem with the problem of recovery of functions by finite convolutions in a scheme of computational (numerical) diameter %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 95-102 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_12_a7/ %G ru %F IVM_2023_12_a7
N. Temirgaliyev; Sh. K. Abikenova; Sh. U. Azhgaliev; Ye. Ye. Nurmoldin; G. E. Taugynbayeva; A. Zh. Zhubanysheva. Equivalence of computed tomography problem with the problem of recovery of functions by finite convolutions in a scheme of computational (numerical) diameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 95-102. http://geodesic.mathdoc.fr/item/IVM_2023_12_a7/
[1] Temirgaliev N., Taugynbaeva G.E., Zhubanysheva A.Zh., “Shirokomasshtabnaya ekvivalentnost norm preobrazovaniya Radona i porodivshei ee funktsii”, Izv. vuzov. Matem., 2023, no. 8, 87–92
[2] Temirgaliev N., Abikenova Sh.K., Azhgaliev Sh.U., Taugynbaeva G.E., Zhubanysheva A.Zh., “Teoriya preobrazovaniya Radona v kontseptsii Kompyuternogo $($vychislitelnogo$)$ poperechnika i metodov teorii kvazi-Monte Karlo”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Informatika. Mekhan., 129:4 (2019), 89–135
[3] Temirgaliev N., Abikenova Sh.K., Azhgaliev Sh.U., Taugynbaeva G.E., “Preobrazovanie Radona v skheme K$($V$)$P-issledovanii i teorii kvazi Monte-Karlo”, Izv. vuzov. Matem., 2020, no. 3, 98–104
[4] Natterer F., The Mathematics of Computerized Tomography, SIAM, 2001 | MR | Zbl
[5] Temirgaliev N., Zhubanysheva A.Zh., “Poryadkovye otsenki norm proizvodnykh funktsii s nulevymi znacheniyami na lineinykh funktsionalakh i ikh primeneniya”, Izv. vuzov. Matem., 2017, no. 3, 89–95 | Zbl
[6] Sherniyazov K.E., “Optimalnye metody priblizhennogo vosstanovleniya funktsii i reshenii uravnenii v chastnykh proizvodnykh vychislitelnymi agregatami po lineinym kombinatsiyam setok Korobova so sverkhszhatiem informatsii i smezhnye voprosy”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Kompyuternye nauki. Mekhan., 139:2 (2022), 26–76
[7] Sherniyazov K., Priblizhennoe vosstanovlenie funktsii i reshenii uravneniya teploprovodnosti s funktsiyami raspredeleniya nachalnykh temperatur iz klassov E, SW i V, Kand. diss. po spets. 01.01.01 - Matem. an., KazGU Al-Farabi, Almaty, 1998
[8] Temirgaliev N., Nauryzbaev N.Zh., Shomanova A.A., “Approksimativnye vozmozhnosti vychislitelnykh agregatov “tipa Smolyaka” s yadrami Dirikhle, Feiera i Valle-Pussena v shkale klassov Ulyanova”, Izv. vuzov. Matem., 2015, no. 7, 75–81 | Zbl
[9] “Nauchno-issledovatelskii potentsial ITMiNV — eto «Nauchnaya Programma V», ponimanie kotoroi obespechivaetsya «Uchebnaya Programma A»”, Sb. tr. Mezhdunar. nauchn. i nauchno-metod. konf. «Matematika, Kompyuternye nauki i Tsifrovye tekhnologii v prepodavanii i v nauchnykh issledovaniyakh», posvyasch. 75-letnemu yubileyu matematika Nurlana Temirgalieva (Oral, 7–10 dekabrya 2022 goda), 121–145
[10] Temirgaliev N., Zhubanysheva A.Zh., “Teoriya priblizhenii, Vychislitelnaya matematika i Chislennyi analiz v novoi kontseptsii v svete Kompyuternogo $($vychislitelnogo$)$ poperechnika”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Informatika. Mekhan., 124:3 (2018), 8–88
[11] Temirgaliev N., “Kompyuternyi $($vychislitelnyi$)$ poperechnik. Algebraicheskaya teoriya chisel i garmonicheskii analiz v zadachakh vosstanovleniya $($metod Kvazi-Monte Karlo$)$. Teoriya vlozhenii i priblizhenii. Ryady Fure”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva, 2010, Spets. vyp., posvyaschennyi nauchn. dostizheniyam matematikov ENU im. L.N. Gumileva
[12] Temirgaliev N., “Teorii vlozhenii i priblizhenii v kontekste K$($V$)$P i vnutrennikh problem teorii funktsii”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Informatika. Mekhan., 125:4 (2018), 8–68
[13] Abikenova Sh.K., Temirgaliev N., “O tochnom poryadke informativnoi moschnosti vsekh vozmozhnykh lineinykh funktsionalov pri diskretizatsii reshenii volnovogo uravneniya”, Diff. uravneniya, 46:8 (2010), 1201–1204 | MR | Zbl
[14] Abikenova Sh.K., Utesov A., Temirgaliev N.T., “O diskretizatsii reshenii volnovogo uravneniya s nachalnymi usloviyami iz obobschennykh klassov Soboleva”, Matem. zametki, 91:3 (2012), 459–463 | DOI | MR | Zbl
[15] Temirgaliev N., Taugynbaeva G.E., Abikenova Sh.K., “Diskretizatsiya reshenii uravnenii v chastnykh proizvodnykh v kontekste Kompyuternogo $($vychislitelnogo$)$ poperechnika”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Kompyuternye nauki. Mekhan., 126:1 (2019), 8–51
[16] Temirgaliev N., Abikenova Sh.K., Zhubanysheva A.Zh., Taugynbaeva G.E., “Zadachi diskretizatsii reshenii volnovogo uravneniya, chislennogo differentsirovaniya i vosstanovleniya funktsii v kontekste kompyuternogo $($vychislitelnogo$)$ poperechnika”, Izv. vuzov. Matem., 2013, no. 8, 86–93 | Zbl
[17] Temirgaliev N., “Primenenie teorii divizorov k chislennomu integrirovaniyu periodicheskikh funktsii mnogikh peremennykh”, Matem. sb., 181:4 (1990), 490–505
[18] Temirgaliev N., “Ob effektivnosti algoritmov chislennogo integrirovaniya, svyazannykh s teoriei divizorov v krugovykh polyakh”, Matem. zametki, 61:2 (1997), 297–301 | DOI | MR | Zbl
[19] Bailov E.A., Zhubanysheva A.Zh., Temirgaliev N., “Ob obschem algoritme chislennogo integrirovaniya periodicheskikh funktsii mnogikh peremennykh”, Dokl. RAN, 416:2 (2007), 169–173 | MR | Zbl
[20] Zhubanysheva A.Zh., Temirgaliev N., Temirgalieva Zh.N., “Primenenie teorii divizorov k postroeniyu tablits optimalnykh koeffitsientov kvadraturnykh formul”, Zh. vychisl. matem. i matem. fiz., 49:1 (2009), 14–25 | MR | Zbl
[21] Bailov E.A., Sikhov M.B., Temirgaliev N., “Ob obschem algoritme chislennogo integrirovaniya funktsii mnogikh peremennykh”, Zh. vychisl. matem. i matem. fiz., 54:7 (2014), 1059–1077 | DOI | MR | Zbl
[22] Temirgaliev N., “Tenzornye proizvedeniya funktsionalov i ikh primeneniya”, Dokl. RAN, 430:4 (2010), 460–465 | Zbl
[23] Natterer F., “A Sobolev Space Analysis of Picture Reconstruction”, SIAM J. Appl. Math., 39:3 (1980), 402–411 | DOI | MR | Zbl