Equivalence of computed tomography problem with the problem of recovery of functions by finite convolutions in a scheme of computational (numerical) diameter
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 95-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equivalence of the norms of deviations of the desired density of a body from operators such as finite density transformation with specially constructed elements and the Radon transformation from it is stated. It is shown how Computer Science, previously established in the theory of Computational (Numerical) diameter, immediately leads to non-trivial results in Computed Tomography.
Mots-clés : Radon transform
Keywords: computed tomography, equivalence of transformations in their norms, computational (numerical) diameter.
@article{IVM_2023_12_a7,
     author = {N. Temirgaliyev and Sh. K. Abikenova and Sh. U. Azhgaliev and Ye. Ye. Nurmoldin and G. E. Taugynbayeva and A. Zh. Zhubanysheva},
     title = {Equivalence of computed tomography problem with the problem of recovery of functions by finite convolutions in a scheme of computational (numerical) diameter},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {95--102},
     publisher = {mathdoc},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a7/}
}
TY  - JOUR
AU  - N. Temirgaliyev
AU  - Sh. K. Abikenova
AU  - Sh. U. Azhgaliev
AU  - Ye. Ye. Nurmoldin
AU  - G. E. Taugynbayeva
AU  - A. Zh. Zhubanysheva
TI  - Equivalence of computed tomography problem with the problem of recovery of functions by finite convolutions in a scheme of computational (numerical) diameter
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 95
EP  - 102
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_12_a7/
LA  - ru
ID  - IVM_2023_12_a7
ER  - 
%0 Journal Article
%A N. Temirgaliyev
%A Sh. K. Abikenova
%A Sh. U. Azhgaliev
%A Ye. Ye. Nurmoldin
%A G. E. Taugynbayeva
%A A. Zh. Zhubanysheva
%T Equivalence of computed tomography problem with the problem of recovery of functions by finite convolutions in a scheme of computational (numerical) diameter
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 95-102
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_12_a7/
%G ru
%F IVM_2023_12_a7
N. Temirgaliyev; Sh. K. Abikenova; Sh. U. Azhgaliev; Ye. Ye. Nurmoldin; G. E. Taugynbayeva; A. Zh. Zhubanysheva. Equivalence of computed tomography problem with the problem of recovery of functions by finite convolutions in a scheme of computational (numerical) diameter. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 95-102. http://geodesic.mathdoc.fr/item/IVM_2023_12_a7/

[1] Temirgaliev N., Taugynbaeva G.E., Zhubanysheva A.Zh., “Shirokomasshtabnaya ekvivalentnost norm preobrazovaniya Radona i porodivshei ee funktsii”, Izv. vuzov. Matem., 2023, no. 8, 87–92

[2] Temirgaliev N., Abikenova Sh.K., Azhgaliev Sh.U., Taugynbaeva G.E., Zhubanysheva A.Zh., “Teoriya preobrazovaniya Radona v kontseptsii Kompyuternogo $($vychislitelnogo$)$ poperechnika i metodov teorii kvazi-Monte Karlo”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Informatika. Mekhan., 129:4 (2019), 89–135

[3] Temirgaliev N., Abikenova Sh.K., Azhgaliev Sh.U., Taugynbaeva G.E., “Preobrazovanie Radona v skheme K$($V$)$P-issledovanii i teorii kvazi Monte-Karlo”, Izv. vuzov. Matem., 2020, no. 3, 98–104

[4] Natterer F., The Mathematics of Computerized Tomography, SIAM, 2001 | MR | Zbl

[5] Temirgaliev N., Zhubanysheva A.Zh., “Poryadkovye otsenki norm proizvodnykh funktsii s nulevymi znacheniyami na lineinykh funktsionalakh i ikh primeneniya”, Izv. vuzov. Matem., 2017, no. 3, 89–95 | Zbl

[6] Sherniyazov K.E., “Optimalnye metody priblizhennogo vosstanovleniya funktsii i reshenii uravnenii v chastnykh proizvodnykh vychislitelnymi agregatami po lineinym kombinatsiyam setok Korobova so sverkhszhatiem informatsii i smezhnye voprosy”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Kompyuternye nauki. Mekhan., 139:2 (2022), 26–76

[7] Sherniyazov K., Priblizhennoe vosstanovlenie funktsii i reshenii uravneniya teploprovodnosti s funktsiyami raspredeleniya nachalnykh temperatur iz klassov E, SW i V, Kand. diss. po spets. 01.01.01 - Matem. an., KazGU Al-Farabi, Almaty, 1998

[8] Temirgaliev N., Nauryzbaev N.Zh., Shomanova A.A., “Approksimativnye vozmozhnosti vychislitelnykh agregatov “tipa Smolyaka” s yadrami Dirikhle, Feiera i Valle-Pussena v shkale klassov Ulyanova”, Izv. vuzov. Matem., 2015, no. 7, 75–81 | Zbl

[9] “Nauchno-issledovatelskii potentsial ITMiNV — eto «Nauchnaya Programma V», ponimanie kotoroi obespechivaetsya «Uchebnaya Programma A»”, Sb. tr. Mezhdunar. nauchn. i nauchno-metod. konf. «Matematika, Kompyuternye nauki i Tsifrovye tekhnologii v prepodavanii i v nauchnykh issledovaniyakh», posvyasch. 75-letnemu yubileyu matematika Nurlana Temirgalieva (Oral, 7–10 dekabrya 2022 goda), 121–145

[10] Temirgaliev N., Zhubanysheva A.Zh., “Teoriya priblizhenii, Vychislitelnaya matematika i Chislennyi analiz v novoi kontseptsii v svete Kompyuternogo $($vychislitelnogo$)$ poperechnika”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Informatika. Mekhan., 124:3 (2018), 8–88

[11] Temirgaliev N., “Kompyuternyi $($vychislitelnyi$)$ poperechnik. Algebraicheskaya teoriya chisel i garmonicheskii analiz v zadachakh vosstanovleniya $($metod Kvazi-Monte Karlo$)$. Teoriya vlozhenii i priblizhenii. Ryady Fure”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva, 2010, Spets. vyp., posvyaschennyi nauchn. dostizheniyam matematikov ENU im. L.N. Gumileva

[12] Temirgaliev N., “Teorii vlozhenii i priblizhenii v kontekste K$($V$)$P i vnutrennikh problem teorii funktsii”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Informatika. Mekhan., 125:4 (2018), 8–68

[13] Abikenova Sh.K., Temirgaliev N., “O tochnom poryadke informativnoi moschnosti vsekh vozmozhnykh lineinykh funktsionalov pri diskretizatsii reshenii volnovogo uravneniya”, Diff. uravneniya, 46:8 (2010), 1201–1204 | MR | Zbl

[14] Abikenova Sh.K., Utesov A., Temirgaliev N.T., “O diskretizatsii reshenii volnovogo uravneniya s nachalnymi usloviyami iz obobschennykh klassov Soboleva”, Matem. zametki, 91:3 (2012), 459–463 | DOI | MR | Zbl

[15] Temirgaliev N., Taugynbaeva G.E., Abikenova Sh.K., “Diskretizatsiya reshenii uravnenii v chastnykh proizvodnykh v kontekste Kompyuternogo $($vychislitelnogo$)$ poperechnika”, Vestn. Evraziisk. nats. un-ta im. L.N. Gumileva. Ser. Matem. Kompyuternye nauki. Mekhan., 126:1 (2019), 8–51

[16] Temirgaliev N., Abikenova Sh.K., Zhubanysheva A.Zh., Taugynbaeva G.E., “Zadachi diskretizatsii reshenii volnovogo uravneniya, chislennogo differentsirovaniya i vosstanovleniya funktsii v kontekste kompyuternogo $($vychislitelnogo$)$ poperechnika”, Izv. vuzov. Matem., 2013, no. 8, 86–93 | Zbl

[17] Temirgaliev N., “Primenenie teorii divizorov k chislennomu integrirovaniyu periodicheskikh funktsii mnogikh peremennykh”, Matem. sb., 181:4 (1990), 490–505

[18] Temirgaliev N., “Ob effektivnosti algoritmov chislennogo integrirovaniya, svyazannykh s teoriei divizorov v krugovykh polyakh”, Matem. zametki, 61:2 (1997), 297–301 | DOI | MR | Zbl

[19] Bailov E.A., Zhubanysheva A.Zh., Temirgaliev N., “Ob obschem algoritme chislennogo integrirovaniya periodicheskikh funktsii mnogikh peremennykh”, Dokl. RAN, 416:2 (2007), 169–173 | MR | Zbl

[20] Zhubanysheva A.Zh., Temirgaliev N., Temirgalieva Zh.N., “Primenenie teorii divizorov k postroeniyu tablits optimalnykh koeffitsientov kvadraturnykh formul”, Zh. vychisl. matem. i matem. fiz., 49:1 (2009), 14–25 | MR | Zbl

[21] Bailov E.A., Sikhov M.B., Temirgaliev N., “Ob obschem algoritme chislennogo integrirovaniya funktsii mnogikh peremennykh”, Zh. vychisl. matem. i matem. fiz., 54:7 (2014), 1059–1077 | DOI | MR | Zbl

[22] Temirgaliev N., “Tenzornye proizvedeniya funktsionalov i ikh primeneniya”, Dokl. RAN, 430:4 (2010), 460–465 | Zbl

[23] Natterer F., “A Sobolev Space Analysis of Picture Reconstruction”, SIAM J. Appl. Math., 39:3 (1980), 402–411 | DOI | MR | Zbl