Rings, matrices over which are representable as the sum of two potent matrices
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 90-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper investigates conditions under which representability of each element $a$ from the field $P$ as the sum $a= f+g$, with $f^{q_{1}} = f$, $g^{q_{2}} = g$ and $q_1, q_2$ are fixed integers $>1$, implies a similar representability of each square matrix over the field $P$. We propose a general approach to solving this problem. As an application we describe fields and commutative rings with $2$ is a unit, over which each square matrix is the sum of two $4$-potent matrices.
Mots-clés : $q$-potent
Keywords: finite field, matrices over finite fields.
@article{IVM_2023_12_a6,
     author = {A. N. Abyzov and D. T. Tapkin},
     title = {Rings, matrices over which are representable as the sum of two potent matrices},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {90--94},
     publisher = {mathdoc},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a6/}
}
TY  - JOUR
AU  - A. N. Abyzov
AU  - D. T. Tapkin
TI  - Rings, matrices over which are representable as the sum of two potent matrices
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 90
EP  - 94
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_12_a6/
LA  - ru
ID  - IVM_2023_12_a6
ER  - 
%0 Journal Article
%A A. N. Abyzov
%A D. T. Tapkin
%T Rings, matrices over which are representable as the sum of two potent matrices
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 90-94
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_12_a6/
%G ru
%F IVM_2023_12_a6
A. N. Abyzov; D. T. Tapkin. Rings, matrices over which are representable as the sum of two potent matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 90-94. http://geodesic.mathdoc.fr/item/IVM_2023_12_a6/

[1] Hirano Y., Tominaga H., “Rings in which every element is the sum of two idempotents”, Bull. Aust. Math. Soc., 37:2 (1988), 161–164 | DOI | MR | Zbl

[2] Tang G., Zhou Y., Su H., “Matrices over a commutative ring as sums of three idempotents or three involutions”, Linear Multilinear Algebra, 67:2 (2019), 267–277 | DOI | MR | Zbl

[3] Abyzov A.N., Mukhametgaliev M.I., “O nekotorykh matrichnykh analogakh maloi teoremy Ferma”, Matem. zametki, 101:2 (2017), 163–168 | DOI | MR | Zbl

[4] Abyzov A.N., Tapkin D.T., “Koltsa, matritsy nad kotorymi predstavimy v vide summy idempotentnoi matriy i q-potentnoi matritsy”, Sib. matem. zhurn., 62:1 (2021), 3–18 | MR | Zbl

[5] Abyzov A.N., Tapkin D.T., When is every matrix over a ring the sum of two tripotents?, Linear Algebra and Appl., 630:3 (2021), 316–325 | DOI | MR | Zbl