Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_12_a6, author = {A. N. Abyzov and D. T. Tapkin}, title = {Rings, matrices over which are representable as the sum of two potent matrices}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {90--94}, publisher = {mathdoc}, number = {12}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a6/} }
TY - JOUR AU - A. N. Abyzov AU - D. T. Tapkin TI - Rings, matrices over which are representable as the sum of two potent matrices JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 90 EP - 94 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_12_a6/ LA - ru ID - IVM_2023_12_a6 ER -
A. N. Abyzov; D. T. Tapkin. Rings, matrices over which are representable as the sum of two potent matrices. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 90-94. http://geodesic.mathdoc.fr/item/IVM_2023_12_a6/
[1] Hirano Y., Tominaga H., “Rings in which every element is the sum of two idempotents”, Bull. Aust. Math. Soc., 37:2 (1988), 161–164 | DOI | MR | Zbl
[2] Tang G., Zhou Y., Su H., “Matrices over a commutative ring as sums of three idempotents or three involutions”, Linear Multilinear Algebra, 67:2 (2019), 267–277 | DOI | MR | Zbl
[3] Abyzov A.N., Mukhametgaliev M.I., “O nekotorykh matrichnykh analogakh maloi teoremy Ferma”, Matem. zametki, 101:2 (2017), 163–168 | DOI | MR | Zbl
[4] Abyzov A.N., Tapkin D.T., “Koltsa, matritsy nad kotorymi predstavimy v vide summy idempotentnoi matriy i q-potentnoi matritsy”, Sib. matem. zhurn., 62:1 (2021), 3–18 | MR | Zbl
[5] Abyzov A.N., Tapkin D.T., When is every matrix over a ring the sum of two tripotents?, Linear Algebra and Appl., 630:3 (2021), 316–325 | DOI | MR | Zbl