Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 3-16

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is concerned with the study of the inverse problem of determining the difference kernel in a Volterra type integral term function in the third-order Moore–Gibson–Thompson (MGT) equation. First, the initial-boundary value problem is reduced to an equivalent problem. Using the Fourier spectral method, the equivalent problem is reduced to a system of integral equations. The existence and uniqueness of the solution to the integral equations are proved. The obtained solution to the integral equations of Volterra-type is also the unique solution to the equivalent problem. Based on the equivalence of the problems, the theorem of the existence and uniqueness of the classical solutions of the original inverse problem is proved.
Mots-clés : MGT equation, existence
Keywords: initial-boundary value problem, inverse problem, uniqueness.
@article{IVM_2023_12_a0,
     author = {D. K. Durdiev and A. A. Boltaev and A. A. Rahmonov},
     title = {Convolution kernel determination problem in the third order {Moore--Gibson--Thompson} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--16},
     publisher = {mathdoc},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - A. A. Boltaev
AU  - A. A. Rahmonov
TI  - Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/
LA  - ru
ID  - IVM_2023_12_a0
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A A. A. Boltaev
%A A. A. Rahmonov
%T Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/
%G ru
%F IVM_2023_12_a0
D. K. Durdiev; A. A. Boltaev; A. A. Rahmonov. Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/