Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is concerned with the study of the inverse problem of determining the difference kernel in a Volterra type integral term function in the third-order Moore–Gibson–Thompson (MGT) equation. First, the initial-boundary value problem is reduced to an equivalent problem. Using the Fourier spectral method, the equivalent problem is reduced to a system of integral equations. The existence and uniqueness of the solution to the integral equations are proved. The obtained solution to the integral equations of Volterra-type is also the unique solution to the equivalent problem. Based on the equivalence of the problems, the theorem of the existence and uniqueness of the classical solutions of the original inverse problem is proved.
Mots-clés : MGT equation, existence
Keywords: initial-boundary value problem, inverse problem, uniqueness.
@article{IVM_2023_12_a0,
     author = {D. K. Durdiev and A. A. Boltaev and A. A. Rahmonov},
     title = {Convolution kernel determination problem in the third order {Moore--Gibson--Thompson} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--16},
     publisher = {mathdoc},
     number = {12},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - A. A. Boltaev
AU  - A. A. Rahmonov
TI  - Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 3
EP  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/
LA  - ru
ID  - IVM_2023_12_a0
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A A. A. Boltaev
%A A. A. Rahmonov
%T Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 3-16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/
%G ru
%F IVM_2023_12_a0
D. K. Durdiev; A. A. Boltaev; A. A. Rahmonov. Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/

[1] Kaltenbacher B., Lasiecka I., Marchand R., “Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound”, Control and Cybernetics, 40:4 (2011), 971–988 | MR | Zbl

[2] Lasiecka I., Wang X., “Moore–Gibson–Thompson equation with memory, part I: exponential decay of energy”, Zeitschrift für angewandte Math. und Phys., 67:2 (2016), 2–17 | MR | Zbl

[3] Al-Khulai W., Boumenir A., “Reconstructing the Moore–Gibson–Thompson Equation”, Nonautonomous Dynamical Systems, 7:1 (2020), 219–223 | DOI | MR | Zbl

[4] Lasiecka I., Wang X., “Moore–Gibson–Thompson equation with memory, part II: General decay of energy”, J. Diff. Equat., 259:12 (2015), 7610–7635 | DOI | MR | Zbl

[5] Lasiecka I., “Global solvability of Moore–Gibson–Thompson equation with memory arising in nonlinear acoustics”, J. Evolution Equat., 17:1 (2017), 411–441 | DOI | MR | Zbl

[6] Romanov V.G., “Inverse problems for differential equations with memory”, Eurasian J. Math. and Comput. Appl., 2:4 (2014), 51–80 | MR

[7] Durdiev D.K., Safarov Zh.Sh., “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki, 97:6 (2015), 855–867 | DOI | Zbl

[8] Durdiev D.K., Totieva Zh.D., “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, J. Inverse Ill-posed Probl., 28:1 (2019), 43–52 | DOI | MR

[9] Durdiev D.K., Zhumaev Zh.Zh., “Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor”, Math. Meth. Appl. Sci., 45 (2022), 8374–8388 | DOI | MR

[10] Durdiev U.D., Totieva Z.D., “A problem of determining a special spatial part of $3$D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci., 42:3 (2019), 7440–7451 | DOI | MR | Zbl

[11] Durdiev D.K., Rakhmonov A.A., “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii $SH$-voln v vyazkouprugoi poristoi srede$:$ globalnaya razreshimost”, TMF, 195:3 (2018), 491–506 | DOI | MR | Zbl

[12] Durdiev D.K., Rahmonov A.A., “A $2$D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci., 43 (2020), 8776–8796 | DOI | MR | Zbl

[13] Bukhgeim A.L., Dyatlov G.V., “Edinstvennost v odnoi obratnoi zadache opredeleniya pamyati”, Sib. matem. zhurn., 37:3 (1996), 526–533 | MR | Zbl

[14] Janno J., Wolfersdorf L., “Inverse problems for identification of memory kernels in heat flow”, Inverse and Ill-posed Probl., 4:1 (1996), 39–66 | MR | Zbl

[15] Pais E., Janno J., “Inverse problem to determine degenerate memory kernel in heat flux with third kind boundary conditions”, Math. Model. and Anal., 11:4 (2006), 427–450 | DOI | MR | Zbl

[16] Colombo F., “An inverse problem for a parabolic integrodifferential model in the theory of combustion”, Phys., 236 (2007), 81–89 | MR | Zbl

[17] Guidetti D., “Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term”, Discrete Continuous Dynamical Systems, 8:4 (2015), 749–756 | DOI | MR | Zbl

[18] Bondarenko A.N., Bugueva T.V., Ivaschenko D.S., “Metod integralnykh preobrazovanii v obratnykh zadachakh anomalnoi diffuzii”, Izv. vuzov. Matem., 2017, no. 3, 3–14 | Zbl

[19] Durdiev D.K., Turdiev Kh.Kh., “Inverse problem for a first-order hyperbolic system with memory”, Diff. Equat., 56:12 (2020), 1634–1643 | DOI | MR | Zbl

[20] Durdiev D.K., Turdiev Kh.Kh., “Zadacha opredeleniya yader v sisteme integrodifferentsialnykh uravnenii Maksvella”, Sib. zhurn. industr. matem., 24:2 (2021), 38–61 | Zbl

[21] Boltaev A.A., Durdiev D.K., “Inverse problem for viscoelastic system in a vertically layered medium”, Vladikavk. matem. zhurn., 24:4 (2022), 30–47 | DOI | MR

[22] Liu S., Triggiani R., “An inverse problem for a third order PDE arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement”, J. Inverse Ill-posed Probl., 21:6 (2013), 825–869 | DOI | MR | Zbl

[23] Arancibia R., Lecaros R., Mercado A., Zamorano S., “An inverse problem for Moore–Gibson–Thompson equation arising in high intensity ultrasound”, J. Inverse Ill-posed Probl., 30:5 (2022), 659–675 | MR | Zbl

[24] Mergaliev Ya.T., “O razreshimosti odnoi obratnoi kraevoi zadachi dlya ellipticheskogo uravneniya vtorogo poryadka”, Vestn. TvGU. Ser. Prikl. matem., 2011, no. 23, 25–38

[25] Megraliev Ya.T., “Ob odnoi obratnoi kraevoi zadachi dlya ellipticheskogo uravneniya vtorogo poryadka s dopolnitelnymi integralnymi usloviyami”, Vladikavk. matem. zhurn., 15:4 (2013), 30–43 | MR

[26] Khudaverdiev K.I., Veliev A.A., Issledovanie odnomernoi smeshannoi zadachi dlya klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinym operatorom v pravoi chasti, Chashegly, Baku, 2010