Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_12_a0, author = {D. K. Durdiev and A. A. Boltaev and A. A. Rahmonov}, title = {Convolution kernel determination problem in the third order {Moore--Gibson--Thompson} equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--16}, publisher = {mathdoc}, number = {12}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/} }
TY - JOUR AU - D. K. Durdiev AU - A. A. Boltaev AU - A. A. Rahmonov TI - Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 3 EP - 16 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/ LA - ru ID - IVM_2023_12_a0 ER -
%0 Journal Article %A D. K. Durdiev %A A. A. Boltaev %A A. A. Rahmonov %T Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 3-16 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/ %G ru %F IVM_2023_12_a0
D. K. Durdiev; A. A. Boltaev; A. A. Rahmonov. Convolution kernel determination problem in the third order Moore--Gibson--Thompson equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2023), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2023_12_a0/
[1] Kaltenbacher B., Lasiecka I., Marchand R., “Wellposedness and exponential decay rates for the Moore–Gibson–Thompson equation arising in high intensity ultrasound”, Control and Cybernetics, 40:4 (2011), 971–988 | MR | Zbl
[2] Lasiecka I., Wang X., “Moore–Gibson–Thompson equation with memory, part I: exponential decay of energy”, Zeitschrift für angewandte Math. und Phys., 67:2 (2016), 2–17 | MR | Zbl
[3] Al-Khulai W., Boumenir A., “Reconstructing the Moore–Gibson–Thompson Equation”, Nonautonomous Dynamical Systems, 7:1 (2020), 219–223 | DOI | MR | Zbl
[4] Lasiecka I., Wang X., “Moore–Gibson–Thompson equation with memory, part II: General decay of energy”, J. Diff. Equat., 259:12 (2015), 7610–7635 | DOI | MR | Zbl
[5] Lasiecka I., “Global solvability of Moore–Gibson–Thompson equation with memory arising in nonlinear acoustics”, J. Evolution Equat., 17:1 (2017), 411–441 | DOI | MR | Zbl
[6] Romanov V.G., “Inverse problems for differential equations with memory”, Eurasian J. Math. and Comput. Appl., 2:4 (2014), 51–80 | MR
[7] Durdiev D.K., Safarov Zh.Sh., “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki, 97:6 (2015), 855–867 | DOI | Zbl
[8] Durdiev D.K., Totieva Zh.D., “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, J. Inverse Ill-posed Probl., 28:1 (2019), 43–52 | DOI | MR
[9] Durdiev D.K., Zhumaev Zh.Zh., “Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor”, Math. Meth. Appl. Sci., 45 (2022), 8374–8388 | DOI | MR
[10] Durdiev U.D., Totieva Z.D., “A problem of determining a special spatial part of $3$D memory kernel in an integro-differential hyperbolic equation”, Math. Meth. Appl. Sci., 42:3 (2019), 7440–7451 | DOI | MR | Zbl
[11] Durdiev D.K., Rakhmonov A.A., “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii $SH$-voln v vyazkouprugoi poristoi srede$:$ globalnaya razreshimost”, TMF, 195:3 (2018), 491–506 | DOI | MR | Zbl
[12] Durdiev D.K., Rahmonov A.A., “A $2$D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Meth. Appl. Sci., 43 (2020), 8776–8796 | DOI | MR | Zbl
[13] Bukhgeim A.L., Dyatlov G.V., “Edinstvennost v odnoi obratnoi zadache opredeleniya pamyati”, Sib. matem. zhurn., 37:3 (1996), 526–533 | MR | Zbl
[14] Janno J., Wolfersdorf L., “Inverse problems for identification of memory kernels in heat flow”, Inverse and Ill-posed Probl., 4:1 (1996), 39–66 | MR | Zbl
[15] Pais E., Janno J., “Inverse problem to determine degenerate memory kernel in heat flux with third kind boundary conditions”, Math. Model. and Anal., 11:4 (2006), 427–450 | DOI | MR | Zbl
[16] Colombo F., “An inverse problem for a parabolic integrodifferential model in the theory of combustion”, Phys., 236 (2007), 81–89 | MR | Zbl
[17] Guidetti D., “Some inverse problems of identification for integrodifferential parabolic systems with a boundary memory term”, Discrete Continuous Dynamical Systems, 8:4 (2015), 749–756 | DOI | MR | Zbl
[18] Bondarenko A.N., Bugueva T.V., Ivaschenko D.S., “Metod integralnykh preobrazovanii v obratnykh zadachakh anomalnoi diffuzii”, Izv. vuzov. Matem., 2017, no. 3, 3–14 | Zbl
[19] Durdiev D.K., Turdiev Kh.Kh., “Inverse problem for a first-order hyperbolic system with memory”, Diff. Equat., 56:12 (2020), 1634–1643 | DOI | MR | Zbl
[20] Durdiev D.K., Turdiev Kh.Kh., “Zadacha opredeleniya yader v sisteme integrodifferentsialnykh uravnenii Maksvella”, Sib. zhurn. industr. matem., 24:2 (2021), 38–61 | Zbl
[21] Boltaev A.A., Durdiev D.K., “Inverse problem for viscoelastic system in a vertically layered medium”, Vladikavk. matem. zhurn., 24:4 (2022), 30–47 | DOI | MR
[22] Liu S., Triggiani R., “An inverse problem for a third order PDE arising in high-intensity ultrasound: Global uniqueness and stability by one boundary measurement”, J. Inverse Ill-posed Probl., 21:6 (2013), 825–869 | DOI | MR | Zbl
[23] Arancibia R., Lecaros R., Mercado A., Zamorano S., “An inverse problem for Moore–Gibson–Thompson equation arising in high intensity ultrasound”, J. Inverse Ill-posed Probl., 30:5 (2022), 659–675 | MR | Zbl
[24] Mergaliev Ya.T., “O razreshimosti odnoi obratnoi kraevoi zadachi dlya ellipticheskogo uravneniya vtorogo poryadka”, Vestn. TvGU. Ser. Prikl. matem., 2011, no. 23, 25–38
[25] Megraliev Ya.T., “Ob odnoi obratnoi kraevoi zadachi dlya ellipticheskogo uravneniya vtorogo poryadka s dopolnitelnymi integralnymi usloviyami”, Vladikavk. matem. zhurn., 15:4 (2013), 30–43 | MR
[26] Khudaverdiev K.I., Veliev A.A., Issledovanie odnomernoi smeshannoi zadachi dlya klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinym operatorom v pravoi chasti, Chashegly, Baku, 2010