Finite element modeling of the eigenvibrations of the square plate with attached oscillator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2023), pp. 92-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the problem on eigenvibrations of the plate with an attached oscillator, the new symmetric linear variational statement is proposed. It is established the existence of the sequence of positive eigenvalues of finite multiplicity with limit point at infinity and the corresponding complete orthonormal system of eigenvectors. The new symmetric scheme of the finite element method with Hermite finite elements is formulated. Error estimates consistent with the solution smoothness for the approximate eigenvalues and approximate eigenvectors are proved. The results of numerical experiments illustrating the influence of the solution smoothness on the computation accuracy are presented.
Keywords: eigenvibration, plate, oscillator, eigenvalue, eigenvector, eigenvalue problem, finite element method.
@article{IVM_2023_11_a7,
     author = {D. M. Korosteleva and S. I. Solov'ev},
     title = {Finite element modeling of the eigenvibrations of the square plate with attached oscillator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {92--97},
     publisher = {mathdoc},
     number = {11},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_11_a7/}
}
TY  - JOUR
AU  - D. M. Korosteleva
AU  - S. I. Solov'ev
TI  - Finite element modeling of the eigenvibrations of the square plate with attached oscillator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 92
EP  - 97
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_11_a7/
LA  - ru
ID  - IVM_2023_11_a7
ER  - 
%0 Journal Article
%A D. M. Korosteleva
%A S. I. Solov'ev
%T Finite element modeling of the eigenvibrations of the square plate with attached oscillator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 92-97
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_11_a7/
%G ru
%F IVM_2023_11_a7
D. M. Korosteleva; S. I. Solov'ev. Finite element modeling of the eigenvibrations of the square plate with attached oscillator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2023), pp. 92-97. http://geodesic.mathdoc.fr/item/IVM_2023_11_a7/

[1] Seregin S.V., Dinamika tonkikh tsilindricheskikh obolochek s prisoedinennoi massoi, KnAGTU, Komsomolsk-na-Amure, 2016

[2] Andreev L.V., Dyshko A.L., Pavlenko I.D., Dinamika plastin i obolochek s sosredotochennymi massami, Mashinostroenie, M., 1988

[3] Andreev L.V., Stankevich A.I., Dyshko A.L., Pavlenko I.D., Dinamika tonkostennykh konstruktsii s prisoedinennymi massami, Izd-vo MAI, M., 2012

[4] Solovev S.I., Nelineinye zadachi na sobstvennye znacheniya. Priblizhennye metody, LAP Lambert Academic Publishing, Saarbrücken, 2011

[5] Algazin S.D., “Numerical study of free oscillations of a beam with oscillators”, J. Appl. Mech. Techn. Phys., 47:3 (2006), 433—438 | DOI | MR | Zbl

[6] Algazin S.D., “Numerical analysis of free vibrations of a beam with oscillators”, J. Appl. Mech. Techn. Phys., 47:4 (2006), 573—581 | DOI | MR | Zbl

[7] Stammberger M., Voss H., “An unsymmetric eigenproblem governing vibrations of a plate with attached loads”, Proceedings of the 12th International Conference on Civil, Structural and Environmental Engineering Computing 2009 (Funchal, Madeira, Portugal, 1–4 September 2009), v. 1, Curran Associates, Inc., New York, 2010, 2880–2889

[8] Su Y., Bai Z., “Solving rational eigenvalue problems via linearization”, SIAM J. Matrix Anal. Appl., 32:1 (2011), 201–216 | DOI | MR | Zbl

[9] Alam F., Behera N., “Linearizations for rational matrix functions and Rosenbrock system polynomials”, SIAM J. Matrix Anal. Appl., 37:1 (2016), 354–380 | DOI | MR | Zbl

[10] Güttel S., Tisseur F., “Solving rational eigenvalue problems via linearization”, Acta Numerica, 26 (2017), 1–94 | DOI | MR | Zbl

[11] Prochnost, ustoichivost, kolebaniya, v. 3, Mashinostroenie, M., 1968

[12] Adams D.A., Sobolev spaces, Academic Press, New York, 1975 | MR | Zbl

[13] Mikhlin S.G., Lineinye uravneniya v chastnykh proizvodnykh, Vyssh. shk., M., 1977

[14] Blum H., Rannacher R., “On the boundary value problem of the biharmonic operator on domains with angular corners”, Math. Meth. Appl. Sci., 2 (1980), 556–581 | DOI | MR | Zbl

[15] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[16] Solov'ev S.I., “Approximation of variational eigenvalue problems”, Diff. Equat., 46:7 (2010), 1030–1041 | DOI | Zbl

[17] Solov'ev S.I., “Approximation of sign-indefinite spectral problems”, Diff. Equat., 48:7 (2012), 1028–1041 | DOI | MR | Zbl

[18] Babuška I., Osborn J.E., “Finite element–Galerkin approximation of the eigenvalues and eigenvectors of selfadjoint problems”, Math. Comp., 52:186 (1989), 275–297 | DOI | MR | Zbl