Mots-clés : Visser's logic
@article{IVM_2023_11_a1,
author = {Ya. I. Petrukhin},
title = {On a modification of {Visser's} formal logic and its connection with {Solovay's} modal logic},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {15--25},
year = {2023},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_11_a1/}
}
Ya. I. Petrukhin. On a modification of Visser's formal logic and its connection with Solovay's modal logic. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2023), pp. 15-25. http://geodesic.mathdoc.fr/item/IVM_2023_11_a1/
[1] Visser A., “A propositional logic with explicit fixed points”, Studia Logica, 40:2 (1981), 155–175 | DOI | MR | Zbl
[2] Solovay R.M., “Provability interpretations of modal logic”, Israel J. Math., 25:3–4 (1976), 287–304 | DOI | MR | Zbl
[3] Kushida H., “A Proof Theory for the Logic of Provability in True Arithmetic”, Studia Logica, 108:4 (2020), 857–875 | DOI | MR | Zbl
[4] Gödel K., “Eine interpretation des intuitionistischen Aussagenkalküls”, Ergebnisse Math. Colloq., 4 (1933), 39–40 | Zbl
[5] Ishii K., Kashima R., Kikuchi K., “Sequent Calculi for Visser's Propositional Logics”, Notre Dame J. Formal Logic, 42:1 (2001), 1–22 | DOI | MR | Zbl
[6] Yamasaki S., Sano K., “Proof-Theoretic Embedding from Visser's Basic Propositional Logic to Modal Logic K$4$ via Non-labelled Sequent Calculi”, Philosophical Logic: Current Trends in Asia. Logic in Asia: Studia Logica Library, Springer, Singapore, 2017, 233–257 | DOI | MR
[7] McKinsey J.C.C., Tarski A., “Some theorems about the sentential calculi of Lewis and Heyting”, J. Symbol. Logic, 13:1 (1948), 1–15 | DOI | MR | Zbl
[8] Visser A., “The provability logics of recursively enumerable theories extending Peano arithmetic at arbitrary theories extending Peano arithmetic”, J. Philosoph. Logic, 13:1 (1984), 97–113 | DOI | MR | Zbl