Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_10_a8, author = {M. V. Mulyukov}, title = {On the stability of one equation with a discrete retarded argument and a constant concentrated delay}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {90--94}, publisher = {mathdoc}, number = {10}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a8/} }
TY - JOUR AU - M. V. Mulyukov TI - On the stability of one equation with a discrete retarded argument and a constant concentrated delay JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 90 EP - 94 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_10_a8/ LA - ru ID - IVM_2023_10_a8 ER -
M. V. Mulyukov. On the stability of one equation with a discrete retarded argument and a constant concentrated delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 90-94. http://geodesic.mathdoc.fr/item/IVM_2023_10_a8/
[1] Kozlov R.I., Kozlova O.R., “Issledovanie ustoichivosti nelineinykh nepreryvno-diskretnykh modelei ekonomicheskoi dinamiki metodom VFL. I”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 2, 104–113
[2] Fridman E., “Stability of linear descriptor systems with delay: a Lyapunov-based approach”, J. Math. Anal. and Appl., 273:1 (2002), 24–44 | DOI | MR | Zbl
[3] Kozlov R.I., Kozlova O.R., “Issledovanie ustoichivosti nelineinykh nepreryvno-diskretnykh modelei ekonomicheskoi dinamiki metodom VFL. II”, Izv. RAN. Teoriya i sistemy upravleniya, 2009, no. 3, 41–50 | Zbl
[4] De la Sen M., “Total Stability Properties Based on Fixed Point Theory for a Class of Hybrid Dynamic Systems”, Hindawi Publ. Corporation Fixed Point Theory and Appl., 2009, 826438 | DOI | MR | Zbl
[5] Simonov P.M., “K voprosu ob ustoichivosti sistemy dvukh lineinykh gibridnykh funktsionalno-differentsialnykh sistem s posledeistviem”, Vestn. rossiisk. un-ov. Matem., 25:131 (2020), 299–306 | Zbl
[6] Bravyi E., Maksimov V., Simonov P., “Some Economic Dynamics Problems for Hybrid Models with Aftereffect”, Math., 8:10 (2020)
[7] Ye H., Michel A.N., Hou L., “Stability Theory for Hybrid Dynamical Systems”, IEEE Transactions on automatic control, 43:4 (1998) | MR
[8] Marchenko V.M., Loiseau J.-J., “On the Stability of Hybrid Difference-Differential Systems”, Diff. Equat., 45 (2009), 743–756 | DOI | MR | Zbl
[9] Marchenko V.M., Borkovskaya I.M., “Ustoichivost i stabilizatsiya lineinykh gibridnykh diskretno-nepreryvnykh statsionarnykh sistem”, Tr. BGTU. Fiz.-matem. nauki i informatika, 2012, no. 6, 7–10
[10] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Vvedenie v teoriyu funktsionalno–differentsialnykh uravnenii, Nauka, M., 1991 | MR
[11] Mulyukov M.V., “Necessary conditions of the stability of one hybrid system”, Memoirs on Diff. Equat. and Math. Phys., 87 (2022), 111–118 | MR | Zbl
[12] Neimark Yu.I., Ustoichivost linearizovannykh sistem (diskretnykh i raspredelennykh), LKVVIA, L., 1949