On the stability of one equation with a discrete retarded argument and a constant concentrated delay
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 90-94

Voir la notice de l'article provenant de la source Math-Net.Ru

A functional differential equation with a discrete retarded argument and a constant concentrated delay is considered. The problem of the asymptotic stability of this equation is reduced to the problem of the location of the spectrum of the shift operator. Coefficient sufficient conditions for the asymptotic stability of this equation are obtained. The domain in the parameter space such that these conditions are necessary is obtained.
Keywords: functional differential equations, asymptotic stability, discrete retarded argument, hybrid systems.
@article{IVM_2023_10_a8,
     author = {M. V. Mulyukov},
     title = {On the stability of one equation with a discrete retarded argument and a constant concentrated delay},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {90--94},
     publisher = {mathdoc},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a8/}
}
TY  - JOUR
AU  - M. V. Mulyukov
TI  - On the stability of one equation with a discrete retarded argument and a constant concentrated delay
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 90
EP  - 94
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_10_a8/
LA  - ru
ID  - IVM_2023_10_a8
ER  - 
%0 Journal Article
%A M. V. Mulyukov
%T On the stability of one equation with a discrete retarded argument and a constant concentrated delay
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 90-94
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_10_a8/
%G ru
%F IVM_2023_10_a8
M. V. Mulyukov. On the stability of one equation with a discrete retarded argument and a constant concentrated delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 90-94. http://geodesic.mathdoc.fr/item/IVM_2023_10_a8/