A block projection operator in the algebra of measurable operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 77-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\tau$ be a faithful normal semifinite trace on a von Neumann algebra $\mathcal{M}$. We investigate the block projection operator $\mathcal{P}_n$ $(n\ge 2)$ in the ${}^*$-algebra $S(\mathcal{M}, \tau )$ of all $\tau$-measurable operators. We show that $A \leq n\mathcal{P}_n(A)$ for any operator $A\in S(\mathcal{M}, \tau)^+$. If an operator $A\in S(\mathcal{M}, \tau)^+$ is invertible in $S(\mathcal{M}, \tau)$ then $\mathcal{P}_n(A)$ is invertible in $S(\mathcal{M}, \tau)$. Consider $A=A^*\in S(\mathcal{M},\tau)$. Then (i) if $\mathcal{P}_n(A)\leq A$ $($or if $\mathcal{P}_n(A)\geq A)$ then $\mathcal{P}_n(A)= A$; (ii) $\mathcal{P}_n(A)= A$ if and only if $P_kA= AP_k$ for all $ k=1, \ldots, n$; (iii) if $A, \mathcal{P}_n(A)\in \mathcal{M}$ are projections then $\mathcal{P}_n(A)= A$. We obtain 4 corollaries. We also refined and reinforced one example from the paper “A. Bikchentaev, F. Sukochev, Inequalities for the block projection operators, J. Funct. Anal. 280 (7), article 108851, 18 p. (2021)”.
Keywords: Hilbert space, von Neumann algebra, trace, measurable operator, block projection operator.
@article{IVM_2023_10_a6,
     author = {A. M. Bikchentaev},
     title = {A block projection operator in the algebra of measurable operators},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {77--82},
     publisher = {mathdoc},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a6/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - A block projection operator in the algebra of measurable operators
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 77
EP  - 82
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_10_a6/
LA  - ru
ID  - IVM_2023_10_a6
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T A block projection operator in the algebra of measurable operators
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 77-82
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_10_a6/
%G ru
%F IVM_2023_10_a6
A. M. Bikchentaev. A block projection operator in the algebra of measurable operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 77-82. http://geodesic.mathdoc.fr/item/IVM_2023_10_a6/

[1] Bikchentaev A., Sukochev F., “Inequalities for the block projection operators”, J. Funct. Anal., 280:7 (2021), 108851, 18 pp. | DOI | MR | Zbl

[2] Gokhberg I.Ts., Krein M.G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[3] Bikchentaev A.M., “Operator blochnogo proektirovaniya v normirovannykh idealnykh prostranstvakh izmerimykh operatorov”, Izv. vuzov. Matem., 2012, no. 2, 86–91 | Zbl

[4] Bikchentaev A., “Trace inequalities for Rickart $C^*$-algebras”, Positivity, 25:5 (2021), 1943–1957 | DOI | MR | Zbl

[5] Takesaki M., Theory of operator algebras. I (Operator Algebras and Non-commutative Geometry, 5), Encyclopaedia of Mathematical Sciences, 124, Springer-Verlag, Berlin, 2002 | MR

[6] Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, v. I, Graduate Studies in Mathematics, 15, Elementary theory, Amer. Math. Soc., Providence, R.I., 1997 | MR | Zbl

[7] Markus M., Mink Kh., Obzor po teorii matrits i matrichnykh neravenstv, Nauka, M., 1972 | MR

[8] Chilin V., Krygin A., Sukochev F., “Extreme points of convex fully symmetric sets of measurable operators”, Integr. Equat. Oper. Theory, 15:2 (1992), 186–226 | DOI | MR | Zbl

[9] Ströh A., West G.P., “$\tau$-compact operators affiliated to a semifinite von Neumann algebra”, Proc. Roy. Irish Acad. Sect. A, 93:1 (1993), 73–86 | MR | Zbl