A block projection operator in the algebra of measurable operators
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 77-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\tau$ be a faithful normal semifinite trace on a von Neumann algebra $\mathcal{M}$. We investigate the block projection operator $\mathcal{P}_n$ $(n\ge 2)$ in the ${}^*$-algebra $S(\mathcal{M}, \tau )$ of all $\tau$-measurable operators. We show that $A \leq n\mathcal{P}_n(A)$ for any operator $A\in S(\mathcal{M}, \tau)^+$. If an operator $A\in S(\mathcal{M}, \tau)^+$ is invertible in $S(\mathcal{M}, \tau)$ then $\mathcal{P}_n(A)$ is invertible in $S(\mathcal{M}, \tau)$. Consider $A=A^*\in S(\mathcal{M},\tau)$. Then (i) if $\mathcal{P}_n(A)\leq A$ $($or if $\mathcal{P}_n(A)\geq A)$ then $\mathcal{P}_n(A)= A$; (ii) $\mathcal{P}_n(A)= A$ if and only if $P_kA= AP_k$ for all $ k=1, \ldots, n$; (iii) if $A, \mathcal{P}_n(A)\in \mathcal{M}$ are projections then $\mathcal{P}_n(A)= A$. We obtain 4 corollaries. We also refined and reinforced one example from the paper “A. Bikchentaev, F. Sukochev, Inequalities for the block projection operators, J. Funct. Anal. 280 (7), article 108851, 18 p. (2021)”.
Keywords:
Hilbert space, von Neumann algebra, trace, measurable operator, block projection operator.
@article{IVM_2023_10_a6,
author = {A. M. Bikchentaev},
title = {A block projection operator in the algebra of measurable operators},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {77--82},
publisher = {mathdoc},
number = {10},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a6/}
}
A. M. Bikchentaev. A block projection operator in the algebra of measurable operators. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 77-82. http://geodesic.mathdoc.fr/item/IVM_2023_10_a6/