Inverse coefficient problems for a time-fractional wave equation with the generalized Riemann--Liouville time derivative
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 46-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper considers the inverse problem of determining the time-dependent coefficient in the fractional wave equation with Hilfer derivative. In this case, the direct problem is initial-boundary value problem for this equation with Cauchy type initial and nonlocal boundary conditions. As overdetermination condition nonlocal integral condition with respect to direct problem solution is given. By the Fourier method, this problem is reduced to equivalent integral equations. Then, using the Mittag-Leffler function and the generalized singular Gronwall inequality, we get apriori estimate for solution via unknown coefficient which we will need to study of the inverse problem. The inverse problem is reduced to the equivalent integral of equation of Volterra type. The principle of contracted mapping is used to solve this equation. Local existence and global uniqueness results are proved.
Keywords: fractional derivative, Riemann–Liouville fractional integral, inverse problem, integral equation, Fourier series, Banach fixed point theorem.
@article{IVM_2023_10_a3,
     author = {H. H. Turdiev},
     title = {Inverse coefficient problems for a time-fractional wave equation with the generalized {Riemann--Liouville} time derivative},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {46--59},
     publisher = {mathdoc},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a3/}
}
TY  - JOUR
AU  - H. H. Turdiev
TI  - Inverse coefficient problems for a time-fractional wave equation with the generalized Riemann--Liouville time derivative
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 46
EP  - 59
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_10_a3/
LA  - ru
ID  - IVM_2023_10_a3
ER  - 
%0 Journal Article
%A H. H. Turdiev
%T Inverse coefficient problems for a time-fractional wave equation with the generalized Riemann--Liouville time derivative
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 46-59
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_10_a3/
%G ru
%F IVM_2023_10_a3
H. H. Turdiev. Inverse coefficient problems for a time-fractional wave equation with the generalized Riemann--Liouville time derivative. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 46-59. http://geodesic.mathdoc.fr/item/IVM_2023_10_a3/

[1] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl

[2] Podlubny I., Fractional Differential Equations, Mathematics in Science and Engineering, 198, Academic Press, New York, 1999 | MR | Zbl

[3] Hilfer R., Luchko Y., Tomovski Z., “Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives”, Fract. Calc. Appl. Anal., 12:3 (2009), 299–318 | MR | Zbl

[4] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Application of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR

[5] Vinagre B.M., Podlubny I., Hernandez A., Feliu V., “Some Approximations of Fractional Order Operators Used in Control Theory and Applications”, Fract. Calc. Appl. Anal., 3:3 (2000), 231–248 | MR | Zbl

[6] Ashurov R., Cabada A., Turmetov B., “Operator Method for Construction of Solutions of Linear Fractional Differential Equations with Constant Coefficients”, Fract. Calc. Appl. Anal., 19:1 (2016), 229–252 | DOI | MR | Zbl

[7] Ashurov R., Umarov S., “Determination of the Order of Fractional Derivative for Subdiffusion Equations”, Fract. Calc. Appl. Anal., 23:6 (2020), 1647–1662 | DOI | MR | Zbl

[8] Alimov Sh., Ashurov R., “Inverse problem of determining an order of the Caputo time-fractional derivative for a subdiffusion equation”, J. Inverse and Ill-posed Probl., 28:5 (2020), 651–658 | DOI | MR | Zbl

[9] Agarwal P., Berdyshev A.S., Karimov E.T., “Solvability of a Non-local Problem with Integral Transmitting Condition for Mixed Type Equation with Caputo Fractional Derivative”, Results Math., 71:3–4 (2017), 1235–1257 | DOI | MR | Zbl

[10] Salakhitdinov M.S., Karimov E.T.,, “Uniqueness of an inverse source non-local problem for fractional order mixed type equations”, Eurasian Math. J., 7:1 (2016), 74–83 | MR | Zbl

[11] Berdyshev A.S., Karimov E.T., Akhtaeva N.S., “On a boundary-value problem for the parabolic-hyperbolic equation with the fractional derivative and the sewing condition of the integral form”, AIP Conf. Proc., 1611:1 (2014), 133–137 | DOI

[12] Karimov E., Mamchuev M., Ruzhansky M., “Non-local initial problem for second order time-fractional and space-singular equation”, Hokkaido Math. J., 49:2 (2020), 349–361 | DOI | MR | Zbl

[13] Durdiev D.K., Totieva Z.D., “The problem of determining the one-dimensional matrix kernel of the system of visco-elasticity equation”, Math. Met. Appl. Sci., 41:17 (2018), 8019–8032 | DOI | MR | Zbl

[14] Durdiev D.K., “O edinstvennosti opredeleniya yadra integro-differentsialnogo uravneniya parabolicheskogo tipa”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiziko-matem. nauki, 19:4 (2015), 658–666 | DOI | Zbl

[15] Kharat V.V., Dhaigude D.B., Hasabe D.R., “On nonlinear mixed fractional integro differential inclusion with four-point nonlocal Riemann–Liouville integral boundary conditions”, Indian J. Pure and Appl. Math., 50:4 (2019), 937–951 | DOI | MR | Zbl

[16] Haide Gou, Tianxiang Wang, “The method of lower and upper solution for Hilfer evolution equations with non-instantaneous impulses”, Indian J. Pure Appl. Math., 54:4 (2023), 499–523 | MR | Zbl

[17] Durdiev D.K., Turdiev Kh.Kh., “Zadacha opredeleniya yader v sisteme integrodifferentsialnykh uravnenii Maksvella”, Sib. zhurn. industrial. matem., 24:2 (2021), 38–61 | Zbl

[18] Durdiev D.K., Turdiev Kh.Kh., “Obratnaya zadacha dlya giperbolicheskoi sistemy pervogo poryadka s pamyatyu”, Differents. uravneniya, 56:12 (2020), 1666–1675 | DOI | Zbl

[19] Durdiev D.K., Rahmonov A.A., Bozorov Z.R., “A two-dimensional diffusion coefficient determination problem for the time-fractional equation”, Math. Meth. Appl. Sci., 44:13 (2021), 10753–10761 | DOI | MR | Zbl

[20] Durdiev U.D., Totieva Z.D., “A problem of determining a special spatial part of $3D$ memory kernel in an integro-differential hyperbolic equation”, Math. Met. Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR | Zbl

[21] Damirchi J., Pourgholi R., Shamami T.R., Zeidabadi H., Janmohammadi A., “Identification of a Time Dependent Source Function in a Parabolic Inverse Problem via Finite Element Approach”, Indian J. Pure and Appl. Math., 51:4 (2020), 1587–1602 | DOI | MR

[22] Durdiev D.K., “Inverse coefficient problem for the time-fractional diffusion equation”, Eurasian J. Math. and Comput. Appl., 9:1 (2021), 44–54 | MR

[23] Durdiev U.D., “Problem of Determining the Reaction Coefficient in a Fractional Diffusion Equation”, Diff. Equat., 57:9 (2021), 1195–1204 | DOI | MR | Zbl

[24] Durdiev D.K., Rahmonov A.A., “A multidimensional diffusion coefficient determination problem for the time-fractional equation”, Turk. J. Math., 46:6 (2022), 2250–2263 | DOI | MR | Zbl

[25] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lect. Notes Math., 840, eds. Dold A., Eckmann B., Springer, Berlin, 1981 | DOI | MR | Zbl

[26] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[27] Sandev T., Tomovski Ž., Fractional Equations and Models, Springer Nature, Switzerland, 2019 | MR | Zbl

[28] Kolmogorov A.N., Fomin S.V., Elements of the Theory of Functions and Functional Analysis, Dover Publ., New York, 1976 | MR