Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 22-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an inverse problem of determining a kernel in a one-dimensional integro-differential time-fractional diffusion equation with initial-boundary and overdetermination conditions is investigated. An auxiliary problem equivalent to the problem is introduced first. By Fourier method this auxilary problem is reduced to equivalent integral equations. Then, using estimates of the Mittag-Leffler function and successive aproximation method, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown kernel which will be used in study of inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven.
Keywords: fractional derivative, inverse problem, integral equation, Fourier series, Mittag–Leffler function, fixed point theorem.
@article{IVM_2023_10_a1,
     author = {D. K. Durdiev and J. J. Jumaev},
     title = {Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--35},
     publisher = {mathdoc},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - J. J. Jumaev
TI  - Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 22
EP  - 35
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/
LA  - ru
ID  - IVM_2023_10_a1
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A J. J. Jumaev
%T Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 22-35
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/
%G ru
%F IVM_2023_10_a1
D. K. Durdiev; J. J. Jumaev. Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 22-35. http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/

[1] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[2] Freed A., Diethelm K., Luchko Yu., Fractional-order viscoelasticity $($FOV$)$$:$ Constitutive Development Using the Fractional Calculus, NASA's Glenn Research Center, Ohio, 2002

[3] Gorenflo R., Mainardi F., “Random walk models for space-fractional diffusion processes”, Fract. Calc. Appl. Anal., 1998, no. 1, 167–191 | MR | Zbl

[4] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl

[5] Chechkin A.V., Gorenflo R., Sokolov I.M., “Fractional diffusion in inhomogeneous media”, J. Phys. A: Math. Gen., 38:42 (2005), 679–684 | DOI | MR

[6] Mainardi F., Tomirotti M., “Seismic pulse propagation with constant Q and stable probability distributions”, Ann. Geofis., 40:5 (1997), 1311–1328

[7] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: A fractional dynamics approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl

[8] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999 | MR | Zbl

[9] Durdiev D.K., Nuriddinov Z.Z., “Determination of a multidimensional kernel in some parabolic integro-differential equation”, Zhurn. Sib. fed. un-ta. Ser. Matem. i fiz., 14:1 (2021), 117–127 | MR

[10] Durdiev D.K., Zhumaev Zh.Zh., “Problem of determining a multidimensional thermal memory in a heat conductivity equation”, Meth. Funct. Anal. and Topology, 25:3 (2019), 219–226 | MR

[11] Durdiev U.D., “Obratnaya zadacha po opredeleniyu neizvestnogo koeffitsienta v uravnenii kolebaniya balki”, Dif. uravneniya, 58:1 (2022), 37–44 | DOI | MR | Zbl

[12] Durdiev D.K., Zhumaev Zh.Zh., “Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor”, Math. Meth. Appl. Sci., 45:14 (2022), 8374–8388 | DOI | MR

[13] Durdiev D.K., Zhumaev Zh.Zh., “One-Dimensional Inverse Problems of Finding the Kernel of Integro-differential Heat Equation in a Bounded Domain”, Ukrain. Math. J., 73:3 (2022), 1723–1740 | DOI | MR | Zbl

[14] Durdiev D.K., Zhumaev Zh.Zh., “Problem of Determining the Thermal Memory of a Conducting Medium”, Diff. Equat., 56:6 (2020), 785–796 | DOI | MR | Zbl

[15] Luchko Y., “Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation”, Comput. Math. Appl., 59:5 (2010), 1766–1772 | DOI | MR | Zbl

[16] Sakamoto K., Yamamoto M., “Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems”, J. Math. Anal. Appl., 382:1 (2011), 426–447 | DOI | MR | Zbl

[17] Gorenflo R., Luchko Y.F., Zabrejko P.P., “On solvability of linear fractional differential equations in Banach spaces”, Fract. Calc. Appl. Anal., 2 (1999), 163–176 | MR | Zbl

[18] Luchko Y., “Maximum principle for the generalized time-fractional diffusion equation”, J. Math. Anal. and Appl., 351:1 (2009), 218–223 | DOI | MR | Zbl

[19] Kochubei A.N., “Diffusion of fractional order”, Differ. Uravn., 26:4 (1990), 660–670 | MR

[20] Eidelman S.D., Kochubei A.N., “Cauchy problem for fractional diffusion equations”, J. Diff. Equat., 199:2 (2004), 211–255 | DOI | MR | Zbl

[21] Zhang S., “Existence of Solution for a Boundary Value Problem of Fractional Order”, Acta Math. Sci., 26:2 (2006), 220–228 | DOI | MR | Zbl

[22] Xiong X., Zhou Q., Hon Y.C., “An inverse problem for fractional diffusion equation in $2$-dimensional case: stability analysis and regularization”, J. Math. Anal. and Appl., 393:1 (2012), 185–199 | DOI | MR | Zbl

[23] Xiong X., Guo H., Liu X., “An inverse problem for a fractional diffusion equation”, J. Comput. Appl. Math., 236:17 (2012), 4474–4484 | DOI | MR | Zbl

[24] Bondarenko A.N., Bugueva T.V., Ivaschenko D.S., “Metod integralnykh preobrazovanii v obratnykh zadachakh anomalnoi diffuzii”, Izv. vuzov. Matem., 2017, no. 3, 3–14 | Zbl

[25] Durdiev D.K., Rahmonov A.A., Bozorov Z.R., “A two-dimensional diffusion coefficient determination problem for the time-fractional equation”, Math. Meth. Appl. Sci., 44:13 (2021), 10753–10761 | DOI | MR | Zbl

[26] Subhonova Z.A., Rahmonov A.A., “Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation”, Lobachevskii J. Math., 2021, no. 15, 3747–3760 | DOI | MR | Zbl

[27] Durdiev D.K., “Inverse coefficient problem for the time-fractional diffusion equation”, Eurasian J. Math. and Computer Appl., 9:1 (2021), 44–54 | MR

[28] Durdiev U.D., “Problem of determining the reaction coefficient in a fractional diffusion equation”, Diff. Equat., 57:9 (2021), 1195–1204 | DOI | MR | Zbl

[29] Miller L., Yamamoto M., “Coefficient inverse problem for a fractional diffusion equation”, Inverse Probl., 29:7 (2013), 075013 | DOI | MR | Zbl