Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_10_a1, author = {D. K. Durdiev and J. J. Jumaev}, title = {Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {22--35}, publisher = {mathdoc}, number = {10}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/} }
TY - JOUR AU - D. K. Durdiev AU - J. J. Jumaev TI - Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 22 EP - 35 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/ LA - ru ID - IVM_2023_10_a1 ER -
%0 Journal Article %A D. K. Durdiev %A J. J. Jumaev %T Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 22-35 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/ %G ru %F IVM_2023_10_a1
D. K. Durdiev; J. J. Jumaev. Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 22-35. http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/
[1] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006 | MR | Zbl
[2] Freed A., Diethelm K., Luchko Yu., Fractional-order viscoelasticity $($FOV$)$$:$ Constitutive Development Using the Fractional Calculus, NASA's Glenn Research Center, Ohio, 2002
[3] Gorenflo R., Mainardi F., “Random walk models for space-fractional diffusion processes”, Fract. Calc. Appl. Anal., 1998, no. 1, 167–191 | MR | Zbl
[4] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000 | MR | Zbl
[5] Chechkin A.V., Gorenflo R., Sokolov I.M., “Fractional diffusion in inhomogeneous media”, J. Phys. A: Math. Gen., 38:42 (2005), 679–684 | DOI | MR
[6] Mainardi F., Tomirotti M., “Seismic pulse propagation with constant Q and stable probability distributions”, Ann. Geofis., 40:5 (1997), 1311–1328
[7] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: A fractional dynamics approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl
[8] Podlubny I., Fractional Differential Equations, Academic Press, San Diego, 1999 | MR | Zbl
[9] Durdiev D.K., Nuriddinov Z.Z., “Determination of a multidimensional kernel in some parabolic integro-differential equation”, Zhurn. Sib. fed. un-ta. Ser. Matem. i fiz., 14:1 (2021), 117–127 | MR
[10] Durdiev D.K., Zhumaev Zh.Zh., “Problem of determining a multidimensional thermal memory in a heat conductivity equation”, Meth. Funct. Anal. and Topology, 25:3 (2019), 219–226 | MR
[11] Durdiev U.D., “Obratnaya zadacha po opredeleniyu neizvestnogo koeffitsienta v uravnenii kolebaniya balki”, Dif. uravneniya, 58:1 (2022), 37–44 | DOI | MR | Zbl
[12] Durdiev D.K., Zhumaev Zh.Zh., “Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor”, Math. Meth. Appl. Sci., 45:14 (2022), 8374–8388 | DOI | MR
[13] Durdiev D.K., Zhumaev Zh.Zh., “One-Dimensional Inverse Problems of Finding the Kernel of Integro-differential Heat Equation in a Bounded Domain”, Ukrain. Math. J., 73:3 (2022), 1723–1740 | DOI | MR | Zbl
[14] Durdiev D.K., Zhumaev Zh.Zh., “Problem of Determining the Thermal Memory of a Conducting Medium”, Diff. Equat., 56:6 (2020), 785–796 | DOI | MR | Zbl
[15] Luchko Y., “Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation”, Comput. Math. Appl., 59:5 (2010), 1766–1772 | DOI | MR | Zbl
[16] Sakamoto K., Yamamoto M., “Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems”, J. Math. Anal. Appl., 382:1 (2011), 426–447 | DOI | MR | Zbl
[17] Gorenflo R., Luchko Y.F., Zabrejko P.P., “On solvability of linear fractional differential equations in Banach spaces”, Fract. Calc. Appl. Anal., 2 (1999), 163–176 | MR | Zbl
[18] Luchko Y., “Maximum principle for the generalized time-fractional diffusion equation”, J. Math. Anal. and Appl., 351:1 (2009), 218–223 | DOI | MR | Zbl
[19] Kochubei A.N., “Diffusion of fractional order”, Differ. Uravn., 26:4 (1990), 660–670 | MR
[20] Eidelman S.D., Kochubei A.N., “Cauchy problem for fractional diffusion equations”, J. Diff. Equat., 199:2 (2004), 211–255 | DOI | MR | Zbl
[21] Zhang S., “Existence of Solution for a Boundary Value Problem of Fractional Order”, Acta Math. Sci., 26:2 (2006), 220–228 | DOI | MR | Zbl
[22] Xiong X., Zhou Q., Hon Y.C., “An inverse problem for fractional diffusion equation in $2$-dimensional case: stability analysis and regularization”, J. Math. Anal. and Appl., 393:1 (2012), 185–199 | DOI | MR | Zbl
[23] Xiong X., Guo H., Liu X., “An inverse problem for a fractional diffusion equation”, J. Comput. Appl. Math., 236:17 (2012), 4474–4484 | DOI | MR | Zbl
[24] Bondarenko A.N., Bugueva T.V., Ivaschenko D.S., “Metod integralnykh preobrazovanii v obratnykh zadachakh anomalnoi diffuzii”, Izv. vuzov. Matem., 2017, no. 3, 3–14 | Zbl
[25] Durdiev D.K., Rahmonov A.A., Bozorov Z.R., “A two-dimensional diffusion coefficient determination problem for the time-fractional equation”, Math. Meth. Appl. Sci., 44:13 (2021), 10753–10761 | DOI | MR | Zbl
[26] Subhonova Z.A., Rahmonov A.A., “Problem of Determining the Time Dependent Coefficient in the Fractional Diffusion-Wave Equation”, Lobachevskii J. Math., 2021, no. 15, 3747–3760 | DOI | MR | Zbl
[27] Durdiev D.K., “Inverse coefficient problem for the time-fractional diffusion equation”, Eurasian J. Math. and Computer Appl., 9:1 (2021), 44–54 | MR
[28] Durdiev U.D., “Problem of determining the reaction coefficient in a fractional diffusion equation”, Diff. Equat., 57:9 (2021), 1195–1204 | DOI | MR | Zbl
[29] Miller L., Yamamoto M., “Coefficient inverse problem for a fractional diffusion equation”, Inverse Probl., 29:7 (2013), 075013 | DOI | MR | Zbl