Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 22-35

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an inverse problem of determining a kernel in a one-dimensional integro-differential time-fractional diffusion equation with initial-boundary and overdetermination conditions is investigated. An auxiliary problem equivalent to the problem is introduced first. By Fourier method this auxilary problem is reduced to equivalent integral equations. Then, using estimates of the Mittag-Leffler function and successive aproximation method, an estimate for the solution of the direct problem is obtained in terms of the norm of the unknown kernel which will be used in study of inverse problem. The inverse problem is reduced to the equivalent integral equation. For solving this equation the contracted mapping principle is applied. The local existence and global uniqueness results are proven.
Keywords: fractional derivative, inverse problem, integral equation, Fourier series, Mittag–Leffler function, fixed point theorem.
@article{IVM_2023_10_a1,
     author = {D. K. Durdiev and J. J. Jumaev},
     title = {Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--35},
     publisher = {mathdoc},
     number = {10},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - J. J. Jumaev
TI  - Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 22
EP  - 35
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/
LA  - ru
ID  - IVM_2023_10_a1
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A J. J. Jumaev
%T Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 22-35
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/
%G ru
%F IVM_2023_10_a1
D. K. Durdiev; J. J. Jumaev. Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 22-35. http://geodesic.mathdoc.fr/item/IVM_2023_10_a1/