Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_10_a0, author = {A. V. Banshchikov and A. V. Lakeev and V. A. Rusanov}, title = {On polylinear differential realization of the determined dynamic chaos in the class of higher order equations with delay}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--21}, publisher = {mathdoc}, number = {10}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_10_a0/} }
TY - JOUR AU - A. V. Banshchikov AU - A. V. Lakeev AU - V. A. Rusanov TI - On polylinear differential realization of the determined dynamic chaos in the class of higher order equations with delay JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 3 EP - 21 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_10_a0/ LA - ru ID - IVM_2023_10_a0 ER -
%0 Journal Article %A A. V. Banshchikov %A A. V. Lakeev %A V. A. Rusanov %T On polylinear differential realization of the determined dynamic chaos in the class of higher order equations with delay %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 3-21 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_10_a0/ %G ru %F IVM_2023_10_a0
A. V. Banshchikov; A. V. Lakeev; V. A. Rusanov. On polylinear differential realization of the determined dynamic chaos in the class of higher order equations with delay. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2023), pp. 3-21. http://geodesic.mathdoc.fr/item/IVM_2023_10_a0/
[1] Shuster G., Determinirovannyi khaos, Mir, M., 1988 | MR
[2] Chulichkov A.I., Matematicheskie metody nelineinoi dinamiki, FIZMATLIT, M., 2003 | MR
[3] Kantorovich L.V., Akilov G.P., Funktsionalnyi analiz, Nauka, M., 1977 | MR
[4] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR
[5] Kostrikin A.I., Manin Yu.I., Lineinaya algebra i geometriya, Nauka, M., 1986 | MR
[6] Goldman N.L., “Opredelenie koeffitsientov pri proizvodnoi po vremeni v kvazilineinykh parabolicheskikh uravneniyakh v prostranstvakh Geldera”, Diff. uravneniya, 48:12 (2012), 1597–1606 | Zbl
[7] Rusanov V.A., Daneev A.V., Lakeyev A.V., Linke Yu.E., “On the Differential Realization Theory of Nonlinear Dynamic Processes in Hilbert Space”, Far East J. Math. Sci., 97:4 (2015), 495–532 | Zbl
[8] Rusanov V.A., Daneev A.V., Linke Yu.E., “K geometricheskim osnovam differentsialnoi realizatsii dinamicheskikh protsessov v gilbertovom prostranstve”, Kibernetika i sistemnyi analiz, 53:4 (2017), 71–83 | MR | Zbl
[9] Rusanov V.A., Lakeev A.V., Linke Yu.E., “K differentsialnoi realizatsii avtonomnoi nelineinoi sistemy “vkhod-vykhod” minimalnogo dinamicheskogo poryadka v gilbertovom prostranstve”, Dokl. RAN, 451:1 (2013), 24–27 | DOI | Zbl
[10] Anikonov Yu.E., Neschadim M.V., “Ob analiticheskikh metodakh v teorii obratnykh zadach dlya giperbolicheskikh uravnenii”, Sib. zhurn. industr. matem., 14:1 (2011), 27–39 | MR | Zbl
[11] Rusanov V.A., Banshchikov A.V., Daneev A.V., Lakeyev A.V., “Maximum Entropy Principle in the Differential Second-Order Realization of a Nonstationary Bilinear System”, Adv. Diff. Equat. and Control Processes, 20:2 (2019), 223–248 | Zbl
[12] Popkov Yu.S., “Controlled Positive Dynamic Systems with an Entropy Operator: Fundamentals of the Theory and Applications”, Math., 9 (2021), 1–19 | MR
[13] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977
[14] Mesarovich M., Takakhara Ya., Obschaya teoriya sistem: Matematicheskie osnovy, Mir, M., 1978
[15] Kirillov A.A., Elementy teorii predstavlenii, Nauka, M., 1978 | MR
[16] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR
[17] Rusanov V.A., Antonova L.V., Daneev A.V., “Inverse Problem of Nonlinear Systems Analysis: A Behavioral Approach”, Adv. Diff. Equat. and Control Processes, 10:2 (2012), 69–88 | MR | Zbl
[18] Lakeev A.V., Linke Yu.E., Rusanov V.A., “Metricheskie svoistva operatora Releya–Rittsa”, Izv. vuzov. Matem., 2022, no. 9, 54–63 | Zbl
[19] Massera Kh.L., Sheffer Kh.Kh., Lineinye differentsialnye uravneniya i funktsionalnye prostranstva, Mir, M., 1970
[20] Komura Y., “Nonlinear Semi-groups in Hilbert Space”, J. Math. Soc. Japan., 19:4 (1967), 493–507 | DOI | MR | Zbl
[21] Edvards R., Funktsionalnyi analiz: Teoriya i prilozheniya, Mir, M., 1969
[22] Fomenko A.T., Fuks D.B., Kurs gomotopicheskoi topologii, Nauka, M., 1989 | MR
[23] Novikov S.P., Taimanov I.A., Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2014
[24] Grabmeier J., Kaltofen E., Weispfenning V., Handbook in Computer Algebra. Foundations, Applications, Systems, Springer-Verlag, Berlin, 2003 | MR
[25] Kosov A.A., Semenov E.I., “O tochnykh mnogomernykh resheniyakh odnoi nelineinoi sistemy uravnenii reaktsii-diffuzii”, Diff. uravneniya, 54:1 (2018), 108–122 | DOI | Zbl
[26] Brzychczy S., Poznanski R., Mathematical Neuroscience, Academic Press, New York, 2013
[27] Savelev A.V., “Istochniki variatsii dinamicheskikh svoistv nervnoi sistemy na sinapticheskom urovne v neirokompyutinge”, Iskusstvennyi intellekt. NAN Ukrainy, 2006, no. 4, 323–338
[28] Daneev A.V., Lakeyev A.V., Rusanov V.A., Plesnyov P.A., “Differential Non-Autonomous Representation of the Integrative Activity of a Neural Population by a Bilinear Second-Order Model With Delay”, Lect. Notes in Networks and Systems, 319, Springer, 2022, 191–199 | DOI
[29] Zaslavskii G.M., Fizika khaosa v gamiltonovykh sistemakh, In-t komp. tekhn., Izhevsk, 2004
[30] Daneev A.V., Lakeev A.V., Rusanov V.A., “K suschestvovaniyu vpolne nepreryvnoi differentsialnoi realizatsii bilineinoi sistemy vtorogo poryadka”, Izv. Samarsk. nauch. tsentra RAN, 23:4 (2021), 116–132
[31] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964
[32] Daletskii Yu.L., Fomin S.V., Mery i differentsialnye uravneniya v beskonechnomernykh prostranstvakh, Nauka, M., 1983
[33] Van der Shaft A., “K teorii realizatsii nelineinykh sistem, opisyvaemykh differentsialnymi uravneniyami vysshego poryadka”, Teoriya sistem. Matematicheskie metody i modelirovanie, Per. s angl. sb. statei, eds. Kolmogorov A.N., Novikov S.P., Mir, M., 1989, 192–237
[34] Rusanov V.A., Daneev A.V., Lakeyev A.V., Linke Yu.E., “Semiadditivity of the Entropy Rayleigh–Ritz Operator in the Problem of Realization an Invariant Polylinear Controller of a Nonstationary Hyperbolic System”, Adv. Diff. Equat. and Control Processes, 27 (2022), 181–202 | MR | Zbl
[35] Arnold V.I., Obyknovennye differentsialnye uravneniya, MTsNMO, M., 2012
[36] Puankare A., O nauke, Nauka, M., 1983 | MR
[37] Klain M., Matematika. Utrata opredelennosti, Mir, M., 1984
[38] Nyuton I., “Matematicheskie nachala naturalnoi filosofii”, Sobr. tr. akad. A.N. Krylova, v. VII, Izd. AN SSSR, M.-L., 1936 | MR
[39] Rusanov V.A., Antonova L.V., Daneev A.V., Mironov A.S., “Differential Realization with a Minimum Operator Norm of a Controlled Dynamic Process”, Adv. Diff. Equat. and Control Processes, 11:1 (2013), 1–40 | MR | Zbl
[40] Krasnoselskii M.A., Zabreiko P.P., Pustylnik E.I., Sobolevskii P.E., Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR
[41] Rusanov V.A., Lakeev A.V., Linke Yu.E., “K razreshimosti differentsialnoi realizatsii minimalnogo dinamicheskogo poryadka semeistva nelineinykh protsessov “vkhod-vykhod” v gilbertovom prostranstve”, Diff. uravneniya, 51:4 (2015), 524–537 | DOI | Zbl
[42] Zhukova N.I., Levin G.S., Tonysheva N.S., “Khaoticheskie topologicheskie sloeniya”, Izv. vuzov. Matem., 2022, no. 8, 81–86