Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_8_a8, author = {E. V. Lipacheva}, title = {On a representation of a semigroup $C^*$-algebra as a crossed product}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {87--92}, publisher = {mathdoc}, number = {8}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a8/} }
E. V. Lipacheva. On a representation of a semigroup $C^*$-algebra as a crossed product. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 87-92. http://geodesic.mathdoc.fr/item/IVM_2022_8_a8/
[1] Coburn L. A., “The $C^*$-algebra generated by an isometry”, Bull. Amer. Math. Soc., 73 (1967), 722–726 | DOI | MR | Zbl
[2] Coburn L. A., “The $C^*$-algebra generated by an isometry”, Trans. Amer. Math. Soc., 137 (1969), 211–217 | MR | Zbl
[3] Douglas R. G., “On the $C^*$-algebra of a one-parameter semigroup of isometries”, Acta Math., 128:3–4 (1972), 143–151 | DOI | MR | Zbl
[4] Murphy G. J., “Ordered groups and Toeplitz algebras”, J. Oper. Theory, 18 (1987), 303–326 | MR | Zbl
[5] Murphy G. J., “Toeplitz operators and algebras”, Math. Z., 208 (1991), 355–362 | DOI | MR | Zbl
[6] Nica A., “$C^*$-algebras generated by isometries and Wiener — Hopf operators”, J. Operator Theory, 27 (1992), 17–52 | MR | Zbl
[7] Laca M., Raeburn I., “Semigroup crossed products and the Toeplitz algebras of nonabelian groups”, J. Funct. Anal., 139:2 (1996), 415–440 | DOI | MR | Zbl
[8] Li X., “Semigroup $C^*$-algebras”, Operator Algebras and Applications, Abel Symposia 2015, v. 12, eds. Carlsen T. M., Larsen N. S., Neshveyev S., Skau C., Springer, Cham, 2016, 191–202
[9] Cuntz J., “$C^*$-algebras associated with the $ax+b$-semigroup over $\mathbb{N}$”, K-Theory and Noncommutative Geometry, Proceedings of the ICM 2006 Satellite Conf., EMS Ser. Congr. Rep., eds. Guillermo Cortiñas, et al., EMS, Zurich, 2008, 201–215 | DOI | MR | Zbl
[10] Li X., “Ring $C^*$-algebras”, Math. Ann., 348 (2010), 859–898 | DOI | MR | Zbl
[11] Cuntz J., Deninger C., Laca M., “$C^*$-algebras of Toeplitz type associated with algebraic number fields”, Math. Ann., 355 (2013), 1383–1423 | DOI | MR | Zbl
[12] Li X., “Semigroup $C^*$-algebras and amenability of semigroups”, J. Functional Anal., 262 (2012), 4302–4340 | DOI | MR | Zbl
[13] Grigoryan S. A., Gumerov R.N., Lipacheva E. V., “On Extensions of semigroups and their applications to Toeplitz algebras”, Lobachevskii J. of Math., 40:12 (2019), 2052–2061 | DOI | MR | Zbl
[14] Gumerov R. N., “Normalnye rasshireniya polugrupp i vlozheniya polugruppovykh $C^*$-algebr”, Tr. MFTI, 12:1 (2020), 74–82
[15] Lipacheva E. V., “Rasshireniya polugrupp i morfizmy polugruppovykh $C^*$-algebr”, Sib. matem. zhurn., 62:1 (2021), 82–96 | MR | Zbl
[16] Lipacheva E. V., “Trivialnye rasshireniya polugrupp i polugruppovye $C^*$-algebry”, Ufim. matem. zhurn., 14:2 (2022), 70–81 | MR
[17] Lipacheva E. V., “Rasshirenie polugrupp s pomoschyu diedralnoi gruppy i polugruppovye $C^*$-algebry”, Sb. tezisov mezhd. konf. «Teoriya funktsii, teoriya operatorov i kvantovaya teoriya informatsii», Aeterna, Ufa, 2021, 26–27
[18] Williams D. P., Crossed products of $C^*$-algebras, Mathematical Surveys and Monographs, 134, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl
[19] Pedersen G. K., $C^*$-algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press Inc., a subsidiary of Harcourt Brace Jovanovich Publ., London, 1979 | MR | Zbl
[20] Gluskin L. M., Perepelitsyn I. L., “Normalnye rasshireniya polugrupp”, Izv. vuzov. Matem., 1972, no. 12, 46–54 | Zbl
[21] Lyapin E. S., Polugruppy, Fizmatgiz, M., 1960 | MR
[22] Raeburn I., “On crossed products and Takai duality”, Proc. Edinburgh Math. Soc., 31:2 (1988), 321–330 | DOI | MR | Zbl