On a representation of a semigroup $C^*$-algebra as a crossed product
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 87-92
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct the semidirect product $\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times}$ of the additive group $\mathbb{Z}$ of all integers and the multiplicative semigroup $\mathbb{Z}^{\times}$ of integers without zero relative to a semigroup homomorphism $\varphi$ from $\mathbb{Z}^{\times}$ to the endomorphism semigroup of $\mathbb{Z}$. It is shown that this semidirect product is a normal extension of the semigroup $\mathbb{Z}\times \mathbb{N}$ by the residue class group modulo two, where $\mathbb{N}$ is the multiplicative semigroup of all natural numbers. We study the structures of the reduced semigroup $C^*$-algebras for the semigroups $\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times}$ and $\mathbb{Z}\times \mathbb{N}$. We introduce a dynamical system for the semigroup $C^*$-algebra of the semigroup $\mathbb{Z}\times \mathbb{N}$ and its covariant representation. The semigroup $C^*$-algebra of the semigroup $\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times}$ is represented as a crossed product of the $C^*$-algebra of the semigroup $\mathbb{Z}\times \mathbb{N}$ by the residue class group modulo two.
Keywords:
dynamic system, covariant representation, normal extension of semigroups, semidirect product of semigroups, reduced semigroup $C^*$-algebra, crossed product of a $C^*$-algebra by a group.
@article{IVM_2022_8_a8,
author = {E. V. Lipacheva},
title = {On a representation of a semigroup $C^*$-algebra as a crossed product},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {87--92},
publisher = {mathdoc},
number = {8},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a8/}
}
E. V. Lipacheva. On a representation of a semigroup $C^*$-algebra as a crossed product. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 87-92. http://geodesic.mathdoc.fr/item/IVM_2022_8_a8/