On a representation of a semigroup $C^*$-algebra as a crossed product
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 87-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the semidirect product $\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times}$ of the additive group $\mathbb{Z}$ of all integers and the multiplicative semigroup $\mathbb{Z}^{\times}$ of integers without zero relative to a semigroup homomorphism $\varphi$ from $\mathbb{Z}^{\times}$ to the endomorphism semigroup of $\mathbb{Z}$. It is shown that this semidirect product is a normal extension of the semigroup $\mathbb{Z}\times \mathbb{N}$ by the residue class group modulo two, where $\mathbb{N}$ is the multiplicative semigroup of all natural numbers. We study the structures of the reduced semigroup $C^*$-algebras for the semigroups $\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times}$ and $\mathbb{Z}\times \mathbb{N}$. We introduce a dynamical system for the semigroup $C^*$-algebra of the semigroup $\mathbb{Z}\times \mathbb{N}$ and its covariant representation. The semigroup $C^*$-algebra of the semigroup $\mathbb{Z}\rtimes_{\varphi}\mathbb{Z}^{\times}$ is represented as a crossed product of the $C^*$-algebra of the semigroup $\mathbb{Z}\times \mathbb{N}$ by the residue class group modulo two.
Keywords: dynamic system, covariant representation, normal extension of semigroups, semidirect product of semigroups, reduced semigroup $C^*$-algebra, crossed product of a $C^*$-algebra by a group.
@article{IVM_2022_8_a8,
     author = {E. V. Lipacheva},
     title = {On a representation of a semigroup $C^*$-algebra as a crossed product},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--92},
     publisher = {mathdoc},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a8/}
}
TY  - JOUR
AU  - E. V. Lipacheva
TI  - On a representation of a semigroup $C^*$-algebra as a crossed product
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 87
EP  - 92
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_8_a8/
LA  - ru
ID  - IVM_2022_8_a8
ER  - 
%0 Journal Article
%A E. V. Lipacheva
%T On a representation of a semigroup $C^*$-algebra as a crossed product
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 87-92
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_8_a8/
%G ru
%F IVM_2022_8_a8
E. V. Lipacheva. On a representation of a semigroup $C^*$-algebra as a crossed product. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 87-92. http://geodesic.mathdoc.fr/item/IVM_2022_8_a8/

[1] Coburn L. A., “The $C^*$-algebra generated by an isometry”, Bull. Amer. Math. Soc., 73 (1967), 722–726 | DOI | MR | Zbl

[2] Coburn L. A., “The $C^*$-algebra generated by an isometry”, Trans. Amer. Math. Soc., 137 (1969), 211–217 | MR | Zbl

[3] Douglas R. G., “On the $C^*$-algebra of a one-parameter semigroup of isometries”, Acta Math., 128:3–4 (1972), 143–151 | DOI | MR | Zbl

[4] Murphy G. J., “Ordered groups and Toeplitz algebras”, J. Oper. Theory, 18 (1987), 303–326 | MR | Zbl

[5] Murphy G. J., “Toeplitz operators and algebras”, Math. Z., 208 (1991), 355–362 | DOI | MR | Zbl

[6] Nica A., “$C^*$-algebras generated by isometries and Wiener — Hopf operators”, J. Operator Theory, 27 (1992), 17–52 | MR | Zbl

[7] Laca M., Raeburn I., “Semigroup crossed products and the Toeplitz algebras of nonabelian groups”, J. Funct. Anal., 139:2 (1996), 415–440 | DOI | MR | Zbl

[8] Li X., “Semigroup $C^*$-algebras”, Operator Algebras and Applications, Abel Symposia 2015, v. 12, eds. Carlsen T. M., Larsen N. S., Neshveyev S., Skau C., Springer, Cham, 2016, 191–202

[9] Cuntz J., “$C^*$-algebras associated with the $ax+b$-semigroup over $\mathbb{N}$”, K-Theory and Noncommutative Geometry, Proceedings of the ICM 2006 Satellite Conf., EMS Ser. Congr. Rep., eds. Guillermo Cortiñas, et al., EMS, Zurich, 2008, 201–215 | DOI | MR | Zbl

[10] Li X., “Ring $C^*$-algebras”, Math. Ann., 348 (2010), 859–898 | DOI | MR | Zbl

[11] Cuntz J., Deninger C., Laca M., “$C^*$-algebras of Toeplitz type associated with algebraic number fields”, Math. Ann., 355 (2013), 1383–1423 | DOI | MR | Zbl

[12] Li X., “Semigroup $C^*$-algebras and amenability of semigroups”, J. Functional Anal., 262 (2012), 4302–4340 | DOI | MR | Zbl

[13] Grigoryan S. A., Gumerov R.N., Lipacheva E. V., “On Extensions of semigroups and their applications to Toeplitz algebras”, Lobachevskii J. of Math., 40:12 (2019), 2052–2061 | DOI | MR | Zbl

[14] Gumerov R. N., “Normalnye rasshireniya polugrupp i vlozheniya polugruppovykh $C^*$-algebr”, Tr. MFTI, 12:1 (2020), 74–82

[15] Lipacheva E. V., “Rasshireniya polugrupp i morfizmy polugruppovykh $C^*$-algebr”, Sib. matem. zhurn., 62:1 (2021), 82–96 | MR | Zbl

[16] Lipacheva E. V., “Trivialnye rasshireniya polugrupp i polugruppovye $C^*$-algebry”, Ufim. matem. zhurn., 14:2 (2022), 70–81 | MR

[17] Lipacheva E. V., “Rasshirenie polugrupp s pomoschyu diedralnoi gruppy i polugruppovye $C^*$-algebry”, Sb. tezisov mezhd. konf. «Teoriya funktsii, teoriya operatorov i kvantovaya teoriya informatsii», Aeterna, Ufa, 2021, 26–27

[18] Williams D. P., Crossed products of $C^*$-algebras, Mathematical Surveys and Monographs, 134, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl

[19] Pedersen G. K., $C^*$-algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press Inc., a subsidiary of Harcourt Brace Jovanovich Publ., London, 1979 | MR | Zbl

[20] Gluskin L. M., Perepelitsyn I. L., “Normalnye rasshireniya polugrupp”, Izv. vuzov. Matem., 1972, no. 12, 46–54 | Zbl

[21] Lyapin E. S., Polugruppy, Fizmatgiz, M., 1960 | MR

[22] Raeburn I., “On crossed products and Takai duality”, Proc. Edinburgh Math. Soc., 31:2 (1988), 321–330 | DOI | MR | Zbl