Chaotic topological foliations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 81-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We call a foliation $(M, F)$ on a manifold $M$ chaotic if it is topologically transitive and the union of closed leaves is dense in $M$. The chaotic topological foliations of arbitrary codimension on $n$-dimensional manifold can be considered as multidimensional generalization of chaotic dynamical systems in the sense of Devaney. For topological foliations covered by fibrations we prove that a foliation is chaotic if and only if its global holonomy group is chaotic. Applying the method of suspension, a new countable family of pairwise non isomorphic chaotic topological foliations of codimension two on $3$-dimensional closed and non closed manifolds is constructed.
Mots-clés : foliation
Keywords: chaotic foliation, suspended foliation, global holonomy group.
@article{IVM_2022_8_a7,
     author = {N. I. Zhukova and G. S. Levin and N. S. Tonysheva},
     title = {Chaotic topological foliations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--86},
     publisher = {mathdoc},
     number = {8},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a7/}
}
TY  - JOUR
AU  - N. I. Zhukova
AU  - G. S. Levin
AU  - N. S. Tonysheva
TI  - Chaotic topological foliations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 81
EP  - 86
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_8_a7/
LA  - ru
ID  - IVM_2022_8_a7
ER  - 
%0 Journal Article
%A N. I. Zhukova
%A G. S. Levin
%A N. S. Tonysheva
%T Chaotic topological foliations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 81-86
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_8_a7/
%G ru
%F IVM_2022_8_a7
N. I. Zhukova; G. S. Levin; N. S. Tonysheva. Chaotic topological foliations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 81-86. http://geodesic.mathdoc.fr/item/IVM_2022_8_a7/

[1] Devaney R. L., An introduction to chaotic dynamical systems, Benjamin/Cummings Publ. Co., Inc., Menlo Park, CA, 1986 | MR | Zbl

[2] Banks J., Brooks J., Cairns G., Davis G., Stacey P., “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl

[3] Assaf D. IV, Gadbois S., “Definition of chaos”, Amer. Math. Monthly, 99:9 (1992), 865 | DOI | MR

[4] Bazaikin Y. V., Galaev A. S., Zhukova N. I., “Chaos in Cartan foliations”, Chaos, 30:10 (2020), 1–9 | DOI | MR

[5] Churchill R. C., “On defining chaos in the absent of time”, Deterministic chaos in general relativity, NATO Adv. Sci. Inst. Ser. B Phys., 332, eds. Hobill D., Burd A., Coley A., 1994, 107–112 | MR

[6] Cairns G., Davis G., Elton D., Kolganova A., Perversi P., “Chaotic group actions”, Enseign. Math., 41 (1995), 123–133 | MR | Zbl

[7] Polo F., “Sensitive dependence on initial conditions and chaotic group actions”, Proc. Amer. Math. Soc., 138:8 (2010), 2815–2826 | DOI | MR | Zbl

[8] Zhukova N. I., Chubarov G. V., “Aspects of the qualitative theory of suspended foliations”, J. Diff. Equat. and Appl., 9:3–4 (2003), 393–405 | DOI | MR | Zbl

[9] Bogolepova E. V., Zhukova N. I., “Anosov actions of isometry groups on Lorentzian $2$-orbifolds”, Lobachevskii J. Math., 42:14 (2021), 3324–3335 | DOI | MR | Zbl