Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_8_a7, author = {N. I. Zhukova and G. S. Levin and N. S. Tonysheva}, title = {Chaotic topological foliations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {81--86}, publisher = {mathdoc}, number = {8}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_8_a7/} }
N. I. Zhukova; G. S. Levin; N. S. Tonysheva. Chaotic topological foliations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2022), pp. 81-86. http://geodesic.mathdoc.fr/item/IVM_2022_8_a7/
[1] Devaney R. L., An introduction to chaotic dynamical systems, Benjamin/Cummings Publ. Co., Inc., Menlo Park, CA, 1986 | MR | Zbl
[2] Banks J., Brooks J., Cairns G., Davis G., Stacey P., “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR | Zbl
[3] Assaf D. IV, Gadbois S., “Definition of chaos”, Amer. Math. Monthly, 99:9 (1992), 865 | DOI | MR
[4] Bazaikin Y. V., Galaev A. S., Zhukova N. I., “Chaos in Cartan foliations”, Chaos, 30:10 (2020), 1–9 | DOI | MR
[5] Churchill R. C., “On defining chaos in the absent of time”, Deterministic chaos in general relativity, NATO Adv. Sci. Inst. Ser. B Phys., 332, eds. Hobill D., Burd A., Coley A., 1994, 107–112 | MR
[6] Cairns G., Davis G., Elton D., Kolganova A., Perversi P., “Chaotic group actions”, Enseign. Math., 41 (1995), 123–133 | MR | Zbl
[7] Polo F., “Sensitive dependence on initial conditions and chaotic group actions”, Proc. Amer. Math. Soc., 138:8 (2010), 2815–2826 | DOI | MR | Zbl
[8] Zhukova N. I., Chubarov G. V., “Aspects of the qualitative theory of suspended foliations”, J. Diff. Equat. and Appl., 9:3–4 (2003), 393–405 | DOI | MR | Zbl
[9] Bogolepova E. V., Zhukova N. I., “Anosov actions of isometry groups on Lorentzian $2$-orbifolds”, Lobachevskii J. Math., 42:14 (2021), 3324–3335 | DOI | MR | Zbl