A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 58-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Solutions of the Dirichlet and Neumann problems for multidimensional singular elliptic equations in an infinite domain were found in explicit forms in recent works of the authors. In this paper, a problem with mixed conditions, which is a natural generalization of the previously considered Dirichlet and Neumann problems, is studied. In proving the existence of a unique solution to the problem posed, representation of the multiple Lauricella hypergeometric function at limiting values of the variables and a new formula for multiple improper integrals, which generalizes the well-known formula from the handbook of I.S. Gradshtein and I.M. Ryzhik, are used.
Keywords: Problem with mixed boundary conditions in an infinite domain, multidimensional elliptic equation with singular coefficients, fundamental solution, formula for the limit values of a hypergeometric function, Lauricella hypergeometric function of several variables.
@article{IVM_2022_7_a5,
     author = {T. G. Ergashev and Z. R. Tulakova},
     title = {A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--72},
     publisher = {mathdoc},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a5/}
}
TY  - JOUR
AU  - T. G. Ergashev
AU  - Z. R. Tulakova
TI  - A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 58
EP  - 72
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_7_a5/
LA  - ru
ID  - IVM_2022_7_a5
ER  - 
%0 Journal Article
%A T. G. Ergashev
%A Z. R. Tulakova
%T A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 58-72
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_7_a5/
%G ru
%F IVM_2022_7_a5
T. G. Ergashev; Z. R. Tulakova. A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 58-72. http://geodesic.mathdoc.fr/item/IVM_2022_7_a5/

[1] Ergashev T. G., Tulakova Z. R., “Zadacha Dirikhle dlya ellipticheskogo uravneniya s neskolkimi singulyarnymi koeffitsientami v beskonechnoi oblasti”, Izv. vuzov. Matem., 2021, no. 7, 81–91 | Zbl

[2] Ergashev T. G., Tulakova Z. R., Lauricella hypergeometric function and its application to the solution of the Neumann problem for a multidimensional elliptic equation with several singular coefficients in an infinite domain, 2021, arXiv: 2108.02691 | MR

[3] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966 | MR

[4] Amanov D., “Nekotorye kraevye zadachi dlya vyrozhdayuschegosya ellipticheskogo uravneniya v neogranichennoi oblasti”, Izv. AN UzSSR. Ser. Fiz. Matem., 1984, no. 1, 8–13 | MR | Zbl

[5] Amanov D., “Kraevaya zadacha dlya uravneiya ${\rm sgn}\,y |y|^mu_{xx}+x^nu_{yy}=0$ v neogranichennoi oblasti”, Izv. AN UzSSR. Ser.: Fiz. Matem., 1984, no. 2, 8–10 | MR | Zbl

[6] Flaisher N. M., “Ob odnoi zadache Franklya dlya uravneniya Lavrenteva v sluchae neogranichennoi oblasti”, Izv. vuzov. Matem., 1966, no. 6, 152–156

[7] Marichev O. I., “Singulyarnye kraevye zadachi dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, DAN SSSR, 230:3 (1976), 523–526 | MR | Zbl

[8] Shimkovich E. V., “O vesovykh kraevykh zadachakh dlya vyrozhdayuschegosya ellipticheskogo uravneniya v polupolose”, Litovsk. matem. sb., 1990, no. 30, 185–196 | MR | Zbl

[9] Ruziev M. Kh., “O nelokalnoi zadache dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom v neogranichennoi oblasti”, Izv. vuzov. Matem., 2010, no. 11, 41–49

[10] Repin O. A., Lerner M. E., “O zadache Dirikhle dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa v pervom kvadrante”, Vestn. Samarsk. gos. tekh. un-ta. Ser. fiz.-matem. nauki, 1998, no. 6, 5–8

[11] Lerner M. E., Repin O. A., “Nelokalnye kraevye zadachi v vertikalnoi polupolose dlya obobschennogo osesimmetricheskogo uravneniya Gelmgoltsa”, Differents. uravneniya, 37:11 (2001), 1562–1564 | MR | Zbl

[12] Abashkin A. A., “Ob odnoi nelokalnoi zadache dlya osesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Samarsk. gos. tekh. un.ta. Ser. fiz.-matem. nauki, 24:3 (2011), 26–34 | Zbl

[13] Abashkin A. A., “Ob odnoi zadache dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa v beskonechnoi polupolose”, Vestn. Samarsk. gos. tekh. un-ta. Ser. fiz.-matem. nauki, 26:1 (2012), 39–45 | Zbl

[14] Abashkin A. A., “Ob odnoi vesovoi kraevoi zadache v beskonechnoi polupolose dlya dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Izv. vuzov. Matem., 2013, no. 6, 3–12 | MR | Zbl

[15] Khasanov A., Gipergeometricheskie funktsii i ikh primeneniya k resheniyu kraevykh zadach dlya vyrozhdayuschikhsya differentsialnykh uravnenii vtorogo poryadka, Diss. \ldots dokt. fiz.-matem. nauk, In-t matem. i informatsionnykh tekhnologii, Tashkent, 2009

[16] Karimov K. T., “Zadacha Keldysha dlya trekhmernogo uravneniya smeshannogo tipa s tremya singulyarnymi koeffitsientami v polubeskonechnom parallelepipede”, Vestn. Udmurtsk. un-ta. Ser. Matem. Mekhan. Kompyut. nauki, 30:1 (2020), 31–48 | MR | Zbl

[17] Karimov K. T., “Nonlocal problem for an elliptic equation with singular coefficients in a semi-infinite parallelepiped”, Lobachevskii J. Math., 41:1 (2020), 46–57 | DOI | MR | Zbl

[18] Karimov K. T., “Boundary value problems in a semi-infinite Parallelepiped for an elliptic equation with three singular coefficients”, Lobachevskii J. Math., 42:3 (2021), 560–571 | DOI | MR | Zbl

[19] Salakhitdinov M. S., Khasanov A., “K teorii mnogomernogo uravneniya Gellerstedta”, Uzbeksk. matem. zhurn., 2007, no. 3, 95–109 | Zbl

[20] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, John Wiley and Sons, Halsted Press, New York–Chichester–Brisbane–Toronto; Ellis Horwood Limited, Chichester, 1985 | MR | Zbl

[21] Appell P., Kampe de Feriet J., Fonctions Hypergeometriques et Hyperspheriques. Polynomes d'Hermite, Gauthier - Villars, Paris, 1926

[22] Ergashev T. G., “Generalized Holmgren problem for an elliptic equation with several singular coefficients”, Diff. Equat., 56:7 (2020), 842–856 | DOI | MR | Zbl

[23] Hasanov A., Ergashev T. G., “New decomposition formulas associated with the Lauricella multivariable hypergeometric functions”, Montes Taurus J. Pure and Apll. Math., 3:3 (2021), 317–326

[24] Ergashev T. G., “Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients”, J. Siberian Federal Univ. Math. and Phys., 13:1 (2020), 48–57 | DOI | MR | Zbl

[25] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions., v. 1, McGraw-Hill Book Company, New York–Toronto–London, 1953 | MR

[26] Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series and Products, 7th edition, Academic Press, Elsevier, Amsterdam–Boston–Heidelberg–London–New York–Oxford–Paris–San Diego–San Francisco–Singapore–Sydney–Tokyo, 2007 | MR | Zbl