A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 58-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solutions of the Dirichlet and Neumann problems for multidimensional singular elliptic equations in an infinite domain were found in explicit forms in recent works of the authors. In this paper, a problem with mixed conditions, which is a natural generalization of the previously considered Dirichlet and Neumann problems, is studied. In proving the existence of a unique solution to the problem posed, representation of the multiple Lauricella hypergeometric function at limiting values of the variables and a new formula for multiple improper integrals, which generalizes the well-known formula from the handbook of I.S. Gradshtein and I.M. Ryzhik, are used.
Keywords: Problem with mixed boundary conditions in an infinite domain, multidimensional elliptic equation with singular coefficients, fundamental solution, formula for the limit values of a hypergeometric function, Lauricella hypergeometric function of several variables.
@article{IVM_2022_7_a5,
     author = {T. G. Ergashev and Z. R. Tulakova},
     title = {A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--72},
     year = {2022},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a5/}
}
TY  - JOUR
AU  - T. G. Ergashev
AU  - Z. R. Tulakova
TI  - A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 58
EP  - 72
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_7_a5/
LA  - ru
ID  - IVM_2022_7_a5
ER  - 
%0 Journal Article
%A T. G. Ergashev
%A Z. R. Tulakova
%T A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 58-72
%N 7
%U http://geodesic.mathdoc.fr/item/IVM_2022_7_a5/
%G ru
%F IVM_2022_7_a5
T. G. Ergashev; Z. R. Tulakova. A problem with mixed boundary conditions for a singular elliptic equation in an infinite domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 58-72. http://geodesic.mathdoc.fr/item/IVM_2022_7_a5/

[1] Ergashev T. G., Tulakova Z. R., “Zadacha Dirikhle dlya ellipticheskogo uravneniya s neskolkimi singulyarnymi koeffitsientami v beskonechnoi oblasti”, Izv. vuzov. Matem., 2021, no. 7, 81–91 | Zbl

[2] Ergashev T. G., Tulakova Z. R., Lauricella hypergeometric function and its application to the solution of the Neumann problem for a multidimensional elliptic equation with several singular coefficients in an infinite domain, 2021, arXiv: 2108.02691 | MR

[3] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966 | MR

[4] Amanov D., “Nekotorye kraevye zadachi dlya vyrozhdayuschegosya ellipticheskogo uravneniya v neogranichennoi oblasti”, Izv. AN UzSSR. Ser. Fiz. Matem., 1984, no. 1, 8–13 | MR | Zbl

[5] Amanov D., “Kraevaya zadacha dlya uravneiya ${\rm sgn}\,y |y|^mu_{xx}+x^nu_{yy}=0$ v neogranichennoi oblasti”, Izv. AN UzSSR. Ser.: Fiz. Matem., 1984, no. 2, 8–10 | MR | Zbl

[6] Flaisher N. M., “Ob odnoi zadache Franklya dlya uravneniya Lavrenteva v sluchae neogranichennoi oblasti”, Izv. vuzov. Matem., 1966, no. 6, 152–156

[7] Marichev O. I., “Singulyarnye kraevye zadachi dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa”, DAN SSSR, 230:3 (1976), 523–526 | MR | Zbl

[8] Shimkovich E. V., “O vesovykh kraevykh zadachakh dlya vyrozhdayuschegosya ellipticheskogo uravneniya v polupolose”, Litovsk. matem. sb., 1990, no. 30, 185–196 | MR | Zbl

[9] Ruziev M. Kh., “O nelokalnoi zadache dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom v neogranichennoi oblasti”, Izv. vuzov. Matem., 2010, no. 11, 41–49

[10] Repin O. A., Lerner M. E., “O zadache Dirikhle dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa v pervom kvadrante”, Vestn. Samarsk. gos. tekh. un-ta. Ser. fiz.-matem. nauki, 1998, no. 6, 5–8

[11] Lerner M. E., Repin O. A., “Nelokalnye kraevye zadachi v vertikalnoi polupolose dlya obobschennogo osesimmetricheskogo uravneniya Gelmgoltsa”, Differents. uravneniya, 37:11 (2001), 1562–1564 | MR | Zbl

[12] Abashkin A. A., “Ob odnoi nelokalnoi zadache dlya osesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Samarsk. gos. tekh. un.ta. Ser. fiz.-matem. nauki, 24:3 (2011), 26–34 | Zbl

[13] Abashkin A. A., “Ob odnoi zadache dlya obobschennogo dvuosesimmetricheskogo uravneniya Gelmgoltsa v beskonechnoi polupolose”, Vestn. Samarsk. gos. tekh. un-ta. Ser. fiz.-matem. nauki, 26:1 (2012), 39–45 | Zbl

[14] Abashkin A. A., “Ob odnoi vesovoi kraevoi zadache v beskonechnoi polupolose dlya dvuosesimmetricheskogo uravneniya Gelmgoltsa”, Izv. vuzov. Matem., 2013, no. 6, 3–12 | MR | Zbl

[15] Khasanov A., Gipergeometricheskie funktsii i ikh primeneniya k resheniyu kraevykh zadach dlya vyrozhdayuschikhsya differentsialnykh uravnenii vtorogo poryadka, Diss. \ldots dokt. fiz.-matem. nauk, In-t matem. i informatsionnykh tekhnologii, Tashkent, 2009

[16] Karimov K. T., “Zadacha Keldysha dlya trekhmernogo uravneniya smeshannogo tipa s tremya singulyarnymi koeffitsientami v polubeskonechnom parallelepipede”, Vestn. Udmurtsk. un-ta. Ser. Matem. Mekhan. Kompyut. nauki, 30:1 (2020), 31–48 | MR | Zbl

[17] Karimov K. T., “Nonlocal problem for an elliptic equation with singular coefficients in a semi-infinite parallelepiped”, Lobachevskii J. Math., 41:1 (2020), 46–57 | DOI | MR | Zbl

[18] Karimov K. T., “Boundary value problems in a semi-infinite Parallelepiped for an elliptic equation with three singular coefficients”, Lobachevskii J. Math., 42:3 (2021), 560–571 | DOI | MR | Zbl

[19] Salakhitdinov M. S., Khasanov A., “K teorii mnogomernogo uravneniya Gellerstedta”, Uzbeksk. matem. zhurn., 2007, no. 3, 95–109 | Zbl

[20] Srivastava H. M., Karlsson P. W., Multiple Gaussian Hypergeometric Series, John Wiley and Sons, Halsted Press, New York–Chichester–Brisbane–Toronto; Ellis Horwood Limited, Chichester, 1985 | MR | Zbl

[21] Appell P., Kampe de Feriet J., Fonctions Hypergeometriques et Hyperspheriques. Polynomes d'Hermite, Gauthier - Villars, Paris, 1926

[22] Ergashev T. G., “Generalized Holmgren problem for an elliptic equation with several singular coefficients”, Diff. Equat., 56:7 (2020), 842–856 | DOI | MR | Zbl

[23] Hasanov A., Ergashev T. G., “New decomposition formulas associated with the Lauricella multivariable hypergeometric functions”, Montes Taurus J. Pure and Apll. Math., 3:3 (2021), 317–326

[24] Ergashev T. G., “Fundamental solutions for a class of multidimensional elliptic equations with several singular coefficients”, J. Siberian Federal Univ. Math. and Phys., 13:1 (2020), 48–57 | DOI | MR | Zbl

[25] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions., v. 1, McGraw-Hill Book Company, New York–Toronto–London, 1953 | MR

[26] Gradshteyn I. S., Ryzhik I. M., Table of Integrals, Series and Products, 7th edition, Academic Press, Elsevier, Amsterdam–Boston–Heidelberg–London–New York–Oxford–Paris–San Diego–San Francisco–Singapore–Sydney–Tokyo, 2007 | MR | Zbl