Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_7_a4, author = {A. Hosseini}, title = {What can be expected from the image of $\sigma$-derivations on {Banach} algebras?}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {44--57}, publisher = {mathdoc}, number = {7}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a4/} }
A. Hosseini. What can be expected from the image of $\sigma$-derivations on Banach algebras?. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 44-57. http://geodesic.mathdoc.fr/item/IVM_2022_7_a4/
[1] Dales H. G., Aiena P., Eschmeier J., Laursen K., Willis G. A., Introduction to Banach Algebras, Operators and Harmonic Analysis, Cambridge Univ. Press, UK, 2003 | MR | Zbl
[2] Ali Sh., Fosner A., Fosner M., Khan M. S.,, “On generalized Jordan triple $(\alpha, \beta)^{\ast}$-derivations and related mappings”, Mediterr. J. Math., 10 (2013), 1657–1668 | DOI | MR | Zbl
[3] Ashraf M., Rehman N., “On $(\sigma, \tau$)-derivations in prime rings”, Arch. Math., 3 (2002), 259–264 | MR
[4] Gordji M. E., “A characterization of $(\sigma, \tau)$-derivations on von Neumann algebras”, Sci. Bull. Ser. A, Appl. Math. Phys., 73:1 (2011), 111–116 | MR | Zbl
[5] Golbasi O., Koc E., “Notes on Jordan $(\sigma, \tau)^{\ast}$-derivations and Jordan triple $(\sigma, \tau)^{\ast}$-derivations”, Aequat. Math., 85 (2013), 581–591 | DOI | MR | Zbl
[6] Hosseini A., Hassani M., Niknam A., Hejazian S., “Some results on $\sigma$-Derivations”, Ann. Funct. Anal., 2 (2011), 75–84 | DOI | MR | Zbl
[7] Hosseini A., Hassani M., Niknam A., “Generalized $\sigma$-derivation on Banach algebras”, Bull. Iranian Math. Soc., 37 (2011), 81–94 | MR
[8] Hosseini A., “Characterization of some derivations on von Neumann algebras via left centralizers”, Ann. Univ. Ferrara, 64 (2018), 99–110 | DOI | MR | Zbl
[9] Hosseini A., “On the image, characterization, and automatic continuity of $(\sigma, \tau$)-derivations”, Arch. Math., 109 (2017), 461–469 | DOI | MR | Zbl
[10] Hosseini A., Hassani M., Niknam A., “On the Range of a Derivation”, Iran. J. Sci. Technol. Trans. A Sci., 38:A2 (2014), 111–115 | MR
[11] Hosseini A., “A characterization of derivations on uniformly mean value Banach algebras”, Turkish J. Math., 40 (2016), 1058–1070 | DOI | MR | Zbl
[12] Hosseini A., “A new proof of Singer–Wermer theorem with some results on $\{g, h\}$-derivations”, Int. J. Nonlinear Anal. Appl., 11:1 (2020), 453–471 | MR | Zbl
[13] Hosseini A., When is a $(\phi, I)$-derivation continuous and where can its image be found?, Asian-European J. Math., 2022 | DOI
[14] Jung Y. S., Park K. H., “Noncommutative Versions of the Singer–Wermer Conjecture with Linear Left $\theta$-derivations”, Acta Math. Sinica. English Series, 24 (2008), 1891–1900 | DOI | MR | Zbl
[15] Lee T. K., Liu C. K., “Spectrally bounded $\phi$-derivations on Banach algebras”, Proc. Amer. Math. Soc., 133 (2004), 1427–1435 | DOI | MR
[16] Mathieu M., “Where to find the image of a derivation”, Banach Center Publ., 30, 1994, 237–249 | DOI | MR | Zbl
[17] Thomas M. P., “The image of a derivation is contained in the radical”, Ann. of Math., 128:3 (1988), 435–460 | DOI | MR | Zbl
[18] Thomas M. P., “Primitive ideals and derivations on non-commutative Banach algebras”, Pacific J. Math., 159 (1993), 139–152 | DOI | MR | Zbl
[19] Singer I. M., Wermer J., “Derivations on commutative normed algebras”, Math. Ann., 129 (1955), 260–264 | DOI | MR | Zbl
[20] Johnson B. E., “Continuity of derivations on commutative Banach algebras”, Amer. J. Math., 91 (1969), 1–10 | DOI | MR | Zbl
[21] Boudi N., Ouchrif S., “On generalized derivations in Banach algebras”, Studia Math., 194 (2009), 81–89 | DOI | MR | Zbl
[22] Dales H. G., Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, New Ser., 24, Oxford Univ. Press, New York, 2000 | MR | Zbl
[23] Mirzavaziri M., Moslehian M. S., “Automatic continuity of $\sigma$-derivations on $C^{\ast}$-algebras”, Proc. Amer. Math. Soc., 134 (2006), 3319–3327 | DOI | MR | Zbl