What can be expected from the image of $\sigma$-derivations on Banach algebras?
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 44-57
Voir la notice de l'article provenant de la source Math-Net.Ru
The main purpose of this paper is to obtain some results on the image of $\sigma$-derivations on Banach algebras. One of the main results of this paper is to prove that if $\mathcal{A}$ is a commutative Banach algebra and $d:\mathcal{A} \rightarrow \mathcal{A}$ is a continuous $\sigma$-derivation such that $\sigma$ is a continuous homomorphism, $d \sigma = \sigma d = d$ and $\sigma^{2} = \sigma$, then $d(\mathcal{A}) \subseteq {\rm rad}(\mathcal{A})$, where ${\rm rad}(\mathcal{A})$ denotes the Jacobson radical of $\mathcal{A}$. Moreover, we obtain Sinclair's theorem for $\sigma$-derivations without assuming continuity. Indeed, under certain conditions, we prove that if $d$ is a $\sigma$-derivation on a Banach algebra $\mathcal{A}$, then $d(\mathcal{P}) \subseteq \mathcal{P}$ for every primitive ideal $\mathcal{P}$ of $\mathcal{A}$. Some other related results are also discussed.
Keywords:
derivation, $\sigma$-derivation, $(\sigma, \tau)$-derivation, Sinclair's theorem, Singer-Wermer theorem.
@article{IVM_2022_7_a4,
author = {A. Hosseini},
title = {What can be expected from the image of $\sigma$-derivations on {Banach} algebras?},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {44--57},
publisher = {mathdoc},
number = {7},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a4/}
}
A. Hosseini. What can be expected from the image of $\sigma$-derivations on Banach algebras?. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 44-57. http://geodesic.mathdoc.fr/item/IVM_2022_7_a4/