What can be expected from the image of $\sigma$-derivations on Banach algebras?
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 44-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main purpose of this paper is to obtain some results on the image of $\sigma$-derivations on Banach algebras. One of the main results of this paper is to prove that if $\mathcal{A}$ is a commutative Banach algebra and $d:\mathcal{A} \rightarrow \mathcal{A}$ is a continuous $\sigma$-derivation such that $\sigma$ is a continuous homomorphism, $d \sigma = \sigma d = d$ and $\sigma^{2} = \sigma$, then $d(\mathcal{A}) \subseteq {\rm rad}(\mathcal{A})$, where ${\rm rad}(\mathcal{A})$ denotes the Jacobson radical of $\mathcal{A}$. Moreover, we obtain Sinclair's theorem for $\sigma$-derivations without assuming continuity. Indeed, under certain conditions, we prove that if $d$ is a $\sigma$-derivation on a Banach algebra $\mathcal{A}$, then $d(\mathcal{P}) \subseteq \mathcal{P}$ for every primitive ideal $\mathcal{P}$ of $\mathcal{A}$. Some other related results are also discussed.
Keywords: derivation, $\sigma$-derivation, $(\sigma, \tau)$-derivation, Sinclair's theorem, Singer-Wermer theorem.
@article{IVM_2022_7_a4,
     author = {A. Hosseini},
     title = {What can be expected from the image of $\sigma$-derivations on {Banach} algebras?},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--57},
     publisher = {mathdoc},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a4/}
}
TY  - JOUR
AU  - A. Hosseini
TI  - What can be expected from the image of $\sigma$-derivations on Banach algebras?
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 44
EP  - 57
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_7_a4/
LA  - ru
ID  - IVM_2022_7_a4
ER  - 
%0 Journal Article
%A A. Hosseini
%T What can be expected from the image of $\sigma$-derivations on Banach algebras?
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 44-57
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_7_a4/
%G ru
%F IVM_2022_7_a4
A. Hosseini. What can be expected from the image of $\sigma$-derivations on Banach algebras?. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 44-57. http://geodesic.mathdoc.fr/item/IVM_2022_7_a4/

[1] Dales H. G., Aiena P., Eschmeier J., Laursen K., Willis G. A., Introduction to Banach Algebras, Operators and Harmonic Analysis, Cambridge Univ. Press, UK, 2003 | MR | Zbl

[2] Ali Sh., Fosner A., Fosner M., Khan M. S.,, “On generalized Jordan triple $(\alpha, \beta)^{\ast}$-derivations and related mappings”, Mediterr. J. Math., 10 (2013), 1657–1668 | DOI | MR | Zbl

[3] Ashraf M., Rehman N., “On $(\sigma, \tau$)-derivations in prime rings”, Arch. Math., 3 (2002), 259–264 | MR

[4] Gordji M. E., “A characterization of $(\sigma, \tau)$-derivations on von Neumann algebras”, Sci. Bull. Ser. A, Appl. Math. Phys., 73:1 (2011), 111–116 | MR | Zbl

[5] Golbasi O., Koc E., “Notes on Jordan $(\sigma, \tau)^{\ast}$-derivations and Jordan triple $(\sigma, \tau)^{\ast}$-derivations”, Aequat. Math., 85 (2013), 581–591 | DOI | MR | Zbl

[6] Hosseini A., Hassani M., Niknam A., Hejazian S., “Some results on $\sigma$-Derivations”, Ann. Funct. Anal., 2 (2011), 75–84 | DOI | MR | Zbl

[7] Hosseini A., Hassani M., Niknam A., “Generalized $\sigma$-derivation on Banach algebras”, Bull. Iranian Math. Soc., 37 (2011), 81–94 | MR

[8] Hosseini A., “Characterization of some derivations on von Neumann algebras via left centralizers”, Ann. Univ. Ferrara, 64 (2018), 99–110 | DOI | MR | Zbl

[9] Hosseini A., “On the image, characterization, and automatic continuity of $(\sigma, \tau$)-derivations”, Arch. Math., 109 (2017), 461–469 | DOI | MR | Zbl

[10] Hosseini A., Hassani M., Niknam A., “On the Range of a Derivation”, Iran. J. Sci. Technol. Trans. A Sci., 38:A2 (2014), 111–115 | MR

[11] Hosseini A., “A characterization of derivations on uniformly mean value Banach algebras”, Turkish J. Math., 40 (2016), 1058–1070 | DOI | MR | Zbl

[12] Hosseini A., “A new proof of Singer–Wermer theorem with some results on $\{g, h\}$-derivations”, Int. J. Nonlinear Anal. Appl., 11:1 (2020), 453–471 | MR | Zbl

[13] Hosseini A., When is a $(\phi, I)$-derivation continuous and where can its image be found?, Asian-European J. Math., 2022 | DOI

[14] Jung Y. S., Park K. H., “Noncommutative Versions of the Singer–Wermer Conjecture with Linear Left $\theta$-derivations”, Acta Math. Sinica. English Series, 24 (2008), 1891–1900 | DOI | MR | Zbl

[15] Lee T. K., Liu C. K., “Spectrally bounded $\phi$-derivations on Banach algebras”, Proc. Amer. Math. Soc., 133 (2004), 1427–1435 | DOI | MR

[16] Mathieu M., “Where to find the image of a derivation”, Banach Center Publ., 30, 1994, 237–249 | DOI | MR | Zbl

[17] Thomas M. P., “The image of a derivation is contained in the radical”, Ann. of Math., 128:3 (1988), 435–460 | DOI | MR | Zbl

[18] Thomas M. P., “Primitive ideals and derivations on non-commutative Banach algebras”, Pacific J. Math., 159 (1993), 139–152 | DOI | MR | Zbl

[19] Singer I. M., Wermer J., “Derivations on commutative normed algebras”, Math. Ann., 129 (1955), 260–264 | DOI | MR | Zbl

[20] Johnson B. E., “Continuity of derivations on commutative Banach algebras”, Amer. J. Math., 91 (1969), 1–10 | DOI | MR | Zbl

[21] Boudi N., Ouchrif S., “On generalized derivations in Banach algebras”, Studia Math., 194 (2009), 81–89 | DOI | MR | Zbl

[22] Dales H. G., Banach Algebras and Automatic Continuity, London Math. Soc. Monographs, New Ser., 24, Oxford Univ. Press, New York, 2000 | MR | Zbl

[23] Mirzavaziri M., Moslehian M. S., “Automatic continuity of $\sigma$-derivations on $C^{\ast}$-algebras”, Proc. Amer. Math. Soc., 134 (2006), 3319–3327 | DOI | MR | Zbl