Aggregation of strict order fuzzy relations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 30-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding a collective solution is considered when specifying the profile of expert preferences by fuzzy relations of strict order. Non-contradictory aggregated relation is built on the basis of a digraph of a fuzzy relation, the matrix of which consists of the arithmetic mean values of the elements of the matrices of fuzzy preferences of experts. The aggregated relation is also a fuzzy strict order and satisfies the requirements for collective decisions: minimal distance to expert preferences and non-contradictory. Algorithms that implement operations with fuzzy relations are proposed.
Keywords: collective choice, fuzzy preference relation, fuzzy relation digraph, strict order
Mots-clés : minimum distance.
@article{IVM_2022_7_a3,
     author = {S. O. Smerchinskaya and N. P. Yashina},
     title = {Aggregation of strict order fuzzy relations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--43},
     publisher = {mathdoc},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a3/}
}
TY  - JOUR
AU  - S. O. Smerchinskaya
AU  - N. P. Yashina
TI  - Aggregation of strict order fuzzy relations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 30
EP  - 43
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_7_a3/
LA  - ru
ID  - IVM_2022_7_a3
ER  - 
%0 Journal Article
%A S. O. Smerchinskaya
%A N. P. Yashina
%T Aggregation of strict order fuzzy relations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 30-43
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_7_a3/
%G ru
%F IVM_2022_7_a3
S. O. Smerchinskaya; N. P. Yashina. Aggregation of strict order fuzzy relations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 30-43. http://geodesic.mathdoc.fr/item/IVM_2022_7_a3/

[1] Nefedov V. N., Osipova V. A., Smerchinskaya S. O., Yashina N. P., “Neprotivorechivoe agregirovanie otnoshenii strogogo poryadka”, Izv. vuzov. Matem., 2018, no. 5, 71–85

[2] Nefedov V. N., Smerchinskaya S. O., Yashina N. P., “Neprotivorechivoe agregirovanie otnoshenii kvaziporyadka”, Prikl. diskret. matem., 45 (2019), 113–126 | Zbl

[3] Gubko M. V., Lektsii po prinyatiyu reshenii v usloviyakh nechetkoi informatsii, IPU RAN, M., 2004

[4] Nogin V. D., “Mnogokriterialnyi vybor na osnove nechetkoi informatsii”, Iskusstvennyi intellekt i prinyatie reshenii, 2 (2019), 50–61 | DOI

[5] Mirkin B. G., Problema gruppovogo vybora, Nauka, M., 1974 | MR

[6] Orlovskii S. A., Problemy prinyatiya reshenii pri nechetkoi iskhodnoi informatsii, Nauka, M., 1981 | MR

[7] Kofman A., Vvedenie v teoriyu nechetkikh mnozhestv, Radio i svyaz, M., 1982 | MR

[8] Reingold E., Nivergelt Yu., Deo N., Kombinatornye algoritmy. Teoriya i praktika, Mir, M., 1980 | MR

[9] Kofman A., Vvedenie v prikladnuyu kombinatoriku, Nauka, M., 1975 | MR

[10] Smerchinskaya S. O., Yashina N. P., “Preference levels for clusters of alternatives”, International J. Modeling, Simulation, and Sci. Comput., 10:4 (2019) | DOI