Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 10-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the vector Lyapunov functions method and the Krasnoselskii method of canonical domains, a sufficient condition for the existence of non-negative Poisson bounded solutions is obtained. In addition, a sufficient condition for the existence of partially non-negative partially Poisson bounded solutions is obtained.
Keywords: vector Lyapunov function, Krasnosel'skii canonical domain, Poisson boundedness of solution, partial Poisson boundedness of solution, non-negativity of solution.
@article{IVM_2022_7_a1,
     author = {K. S. Lapin},
     title = {Krasnosel'skii canonical domains and the existence of non-negative {Poisson} bounded solutions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--17},
     publisher = {mathdoc},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 10
EP  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/
LA  - ru
ID  - IVM_2022_7_a1
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 10-17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/
%G ru
%F IVM_2022_7_a1
K. S. Lapin. Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 10-17. http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/

[1] Yoshizawa T., “Liapunov's function and boundedness of solutions”, Funkcial. Ekvac., 2 (1959), 95–142 | MR | Zbl

[2] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR

[3] Lapin K. S., “Ogranichennost v predele reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 49:10 (2013), 1281–1286 | Zbl

[4] Vorotnikov V. I., “Ob ustoichivosti i ustoichivosti po chasti peremennykh chastichnykh polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. RAN, 389:3 (2003), 332–337

[5] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR

[6] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatlit, M., 1962 | MR

[7] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001

[8] Lapin K. S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | Zbl

[9] Zvyagin V. G., Kornev S. V., Metod napravlyayuschikh funktsii i ego modifikatsii, LENAND, M., 2018

[10] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1980