@article{IVM_2022_7_a1,
author = {K. S. Lapin},
title = {Krasnosel'skii canonical domains and the existence of non-negative {Poisson} bounded solutions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {10--17},
year = {2022},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/}
}
K. S. Lapin. Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 10-17. http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/
[1] Yoshizawa T., “Liapunov's function and boundedness of solutions”, Funkcial. Ekvac., 2 (1959), 95–142 | MR | Zbl
[2] Rumyantsev V. V., Oziraner A. S., Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR
[3] Lapin K. S., “Ogranichennost v predele reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 49:10 (2013), 1281–1286 | Zbl
[4] Vorotnikov V. I., “Ob ustoichivosti i ustoichivosti po chasti peremennykh chastichnykh polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. RAN, 389:3 (2003), 332–337
[5] Krasnoselskii M. A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Nauka, M., 1966 | MR
[6] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatlit, M., 1962 | MR
[7] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001
[8] Lapin K. S., “Ravnomernaya ogranichennost po Puassonu reshenii sistem differentsialnykh uravnenii i vektor-funktsii Lyapunova”, Differents. uravneniya, 54:1 (2018), 40–50 | Zbl
[9] Zvyagin V. G., Kornev S. V., Metod napravlyayuschikh funktsii i ego modifikatsii, LENAND, M., 2018
[10] Kartashev A. P., Rozhdestvenskii B. L., Obyknovennye differentsialnye uravneniya i osnovy variatsionnogo ischisleniya, Nauka, M., 1980