Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 10-17

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of the vector Lyapunov functions method and the Krasnoselskii method of canonical domains, a sufficient condition for the existence of non-negative Poisson bounded solutions is obtained. In addition, a sufficient condition for the existence of partially non-negative partially Poisson bounded solutions is obtained.
Keywords: vector Lyapunov function, Krasnosel'skii canonical domain, Poisson boundedness of solution, partial Poisson boundedness of solution, non-negativity of solution.
@article{IVM_2022_7_a1,
     author = {K. S. Lapin},
     title = {Krasnosel'skii canonical domains and the existence of non-negative {Poisson} bounded solutions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--17},
     publisher = {mathdoc},
     number = {7},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 10
EP  - 17
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/
LA  - ru
ID  - IVM_2022_7_a1
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 10-17
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/
%G ru
%F IVM_2022_7_a1
K. S. Lapin. Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 10-17. http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/