Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 10-17
Voir la notice de l'article provenant de la source Math-Net.Ru
On the basis of the vector Lyapunov functions method and the Krasnoselskii method of canonical domains, a sufficient condition for the existence of non-negative Poisson bounded solutions is obtained. In addition, a sufficient condition for the existence of partially non-negative partially Poisson bounded solutions is obtained.
Keywords:
vector Lyapunov function, Krasnosel'skii canonical domain, Poisson boundedness of solution, partial Poisson boundedness of solution, non-negativity of solution.
@article{IVM_2022_7_a1,
author = {K. S. Lapin},
title = {Krasnosel'skii canonical domains and the existence of non-negative {Poisson} bounded solutions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {10--17},
publisher = {mathdoc},
number = {7},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/}
}
TY - JOUR AU - K. S. Lapin TI - Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 10 EP - 17 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/ LA - ru ID - IVM_2022_7_a1 ER -
K. S. Lapin. Krasnosel'skii canonical domains and the existence of non-negative Poisson bounded solutions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2022), pp. 10-17. http://geodesic.mathdoc.fr/item/IVM_2022_7_a1/