Weak solvability of non-linearly viscous Pavlovsky model
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 87-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the solvability of one initial-boundary value problem describing the motion of aqueous polymers solutions. This model considers the non-linear viscosity of the fluid. The existence of weak solutions to the problem under consideration is proved on the base of the topological approximation approach. Also for the studied mathematical model the problem of optimal feedback control is considered. The existence of an optimal solution that gives a minimum to a given bounded and lower semicontinuous performance functional is proved.
Keywords: weak solution, viscoelastic fluid, non-linearly viscosity, feedback control, existence theorem.
@article{IVM_2022_6_a8,
     author = {A. V. Zvyagin},
     title = {Weak solvability of non-linearly viscous {Pavlovsky} model},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--93},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a8/}
}
TY  - JOUR
AU  - A. V. Zvyagin
TI  - Weak solvability of non-linearly viscous Pavlovsky model
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 87
EP  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_6_a8/
LA  - ru
ID  - IVM_2022_6_a8
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%T Weak solvability of non-linearly viscous Pavlovsky model
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 87-93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_6_a8/
%G ru
%F IVM_2022_6_a8
A. V. Zvyagin. Weak solvability of non-linearly viscous Pavlovsky model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 87-93. http://geodesic.mathdoc.fr/item/IVM_2022_6_a8/

[1] Voitkunskii Ya.I., Amfilokhiev V.B., Pavlovskii V.A., “Uravneniya dvizheniya zhidkosti s uchetom ee relaksatsionnykh svoistv”, Tr. Leningradsk. ord. Lenina korablestroit. in-ta, 69 (1970), 19–26

[2] Pavlovskii V.A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, DAN SSSR, 200:4 (1971), 809–812

[3] Pukhnachev V.V., Frolovskaya O.A., “O modeli Voitkunskogo–Amfilokhieva–Pavlovskogo dvizheniya vodnykh rastvorov polimerov”, Tr. MIAN, 300, 2018, 176–189 | Zbl

[4] Frolovskaya O.A., Pukhnachev V.V., “Analysis of the models of motion of aqueous solutions of polymers on the basis of their exact solutions”, Polymers, 10 (2018), 684 | DOI | MR

[5] Meleshko S.V., Pukhnachev V.V., “Group analysis of the boundary layer equations in the models of polymer solutions”, Symmetry, 12 (2020), 1084 | DOI | MR

[6] Oskolkov A.P., “O nekotorykh kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Zap. nauch. seminarov LOMI, 52, 1975, 128–157 | Zbl

[7] Turbin M.V., “Research of a mathematical model of low-concentrated aqueous polymer solutions”, Abstr. Appl. Anal., 2006 (2006), 12497, 27 pp. | DOI | MR | Zbl

[8] Zvyagin A.V., “O razreshimosti statsionarnoi modeli dvizheniya slabykh vodnykh rastvorov polimerov”, Izv. vuzov. Matem., 2011, no. 2, 103–105 | Zbl

[9] Zvyagin A.V., “Issledovanie razreshimosti termovyazkouprugoi modeli, opisyvayuschei dvizhenie slabo kontsentrirovannykh vodnykh rastvorov polimerov”, Sib. matem. zhurn., 59:5 (2018), 1066–1085 | MR | Zbl

[10] Turbin M.V., Ustyuzhaninova A.S., “Teorema suschestvovaniya slabogo resheniya nachalno-kraevoi zadachi dlya sistemy uravnenii, opisyvayuschei dvizhenie slabykh vodnykh rastvorov polimerov”, Izv. vuzov. Matem., 2019, no. 8, 62–78 | Zbl

[11] Plotnikov P.I., Turbin M.V., Ustyuzhaninova A.S., “Teorema suschestvovaniya slabogo resheniya zadachi optimalnogo upravleniya s obratnoi svyazyu dlya modifitsirovannoi modeli Kelvina–Foigta slabo kontsentrirovannykh vodnykh rastvorov polimerov”, DAN, 488:2 (2019), 133–136 | Zbl

[12] Litvinov V.G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR

[13] Litvinov W.G., “Model for laminar and turbulent flows of viscous and nonlinear viscous non-Newtonian fluids”, J. Math. Phys., 52 (2011), 053102 | DOI | MR | Zbl

[14] Zvyagin V.G., Turbin M.V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND (URSS), M., 2012

[15] Zvyagin V.G., “Topological approximation approach to study of mathematical problems of hydrodynamics”, J. Math. Sci., 201:6 (2014), 830–858 | DOI | MR | Zbl

[16] Vorotnikov D.A., Zvyagin V.G., “On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium”, Abstr. Appl. Anal., 2004:10 (2004), 815–829 | DOI | MR | Zbl

[17] Zvyagin A.V., “O slaboi razreshimosti i skhodimosti reshenii drobnoi alfa–modeli Foigta dvizheniya vyazkouprugoi sredy”, UMN, 74:3 (2019), 189–190 | MR | Zbl

[18] Zvyagin A.V., “Issledovanie slaboi razreshimosti drobnoi alfa-modeli Foigta”, Izv. RAN. Ser. matem., 85:1 (2021), 66–97 | MR | Zbl

[19] Zvyagin A., “Solvability of the non-linearly viscous polymer solutions motion model”, Polymers, 14 (2022), 1264 | DOI