Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_6_a8, author = {A. V. Zvyagin}, title = {Weak solvability of non-linearly viscous {Pavlovsky} model}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {87--93}, publisher = {mathdoc}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a8/} }
A. V. Zvyagin. Weak solvability of non-linearly viscous Pavlovsky model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 87-93. http://geodesic.mathdoc.fr/item/IVM_2022_6_a8/
[1] Voitkunskii Ya.I., Amfilokhiev V.B., Pavlovskii V.A., “Uravneniya dvizheniya zhidkosti s uchetom ee relaksatsionnykh svoistv”, Tr. Leningradsk. ord. Lenina korablestroit. in-ta, 69 (1970), 19–26
[2] Pavlovskii V.A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, DAN SSSR, 200:4 (1971), 809–812
[3] Pukhnachev V.V., Frolovskaya O.A., “O modeli Voitkunskogo–Amfilokhieva–Pavlovskogo dvizheniya vodnykh rastvorov polimerov”, Tr. MIAN, 300, 2018, 176–189 | Zbl
[4] Frolovskaya O.A., Pukhnachev V.V., “Analysis of the models of motion of aqueous solutions of polymers on the basis of their exact solutions”, Polymers, 10 (2018), 684 | DOI | MR
[5] Meleshko S.V., Pukhnachev V.V., “Group analysis of the boundary layer equations in the models of polymer solutions”, Symmetry, 12 (2020), 1084 | DOI | MR
[6] Oskolkov A.P., “O nekotorykh kvazilineinykh sistemakh, vstrechayuschikhsya pri izuchenii dvizheniya vyazkikh zhidkostei”, Zap. nauch. seminarov LOMI, 52, 1975, 128–157 | Zbl
[7] Turbin M.V., “Research of a mathematical model of low-concentrated aqueous polymer solutions”, Abstr. Appl. Anal., 2006 (2006), 12497, 27 pp. | DOI | MR | Zbl
[8] Zvyagin A.V., “O razreshimosti statsionarnoi modeli dvizheniya slabykh vodnykh rastvorov polimerov”, Izv. vuzov. Matem., 2011, no. 2, 103–105 | Zbl
[9] Zvyagin A.V., “Issledovanie razreshimosti termovyazkouprugoi modeli, opisyvayuschei dvizhenie slabo kontsentrirovannykh vodnykh rastvorov polimerov”, Sib. matem. zhurn., 59:5 (2018), 1066–1085 | MR | Zbl
[10] Turbin M.V., Ustyuzhaninova A.S., “Teorema suschestvovaniya slabogo resheniya nachalno-kraevoi zadachi dlya sistemy uravnenii, opisyvayuschei dvizhenie slabykh vodnykh rastvorov polimerov”, Izv. vuzov. Matem., 2019, no. 8, 62–78 | Zbl
[11] Plotnikov P.I., Turbin M.V., Ustyuzhaninova A.S., “Teorema suschestvovaniya slabogo resheniya zadachi optimalnogo upravleniya s obratnoi svyazyu dlya modifitsirovannoi modeli Kelvina–Foigta slabo kontsentrirovannykh vodnykh rastvorov polimerov”, DAN, 488:2 (2019), 133–136 | Zbl
[12] Litvinov V.G., Dvizhenie nelineino-vyazkoi zhidkosti, Nauka, M., 1982 | MR
[13] Litvinov W.G., “Model for laminar and turbulent flows of viscous and nonlinear viscous non-Newtonian fluids”, J. Math. Phys., 52 (2011), 053102 | DOI | MR | Zbl
[14] Zvyagin V.G., Turbin M.V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND (URSS), M., 2012
[15] Zvyagin V.G., “Topological approximation approach to study of mathematical problems of hydrodynamics”, J. Math. Sci., 201:6 (2014), 830–858 | DOI | MR | Zbl
[16] Vorotnikov D.A., Zvyagin V.G., “On the existence of weak solutions for the initial-boundary value problem in the Jeffreys model of motion of a viscoelastic medium”, Abstr. Appl. Anal., 2004:10 (2004), 815–829 | DOI | MR | Zbl
[17] Zvyagin A.V., “O slaboi razreshimosti i skhodimosti reshenii drobnoi alfa–modeli Foigta dvizheniya vyazkouprugoi sredy”, UMN, 74:3 (2019), 189–190 | MR | Zbl
[18] Zvyagin A.V., “Issledovanie slaboi razreshimosti drobnoi alfa-modeli Foigta”, Izv. RAN. Ser. matem., 85:1 (2021), 66–97 | MR | Zbl
[19] Zvyagin A., “Solvability of the non-linearly viscous polymer solutions motion model”, Polymers, 14 (2022), 1264 | DOI