Weak solvability of non-linearly viscous Pavlovsky model
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 87-93

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the solvability of one initial-boundary value problem describing the motion of aqueous polymers solutions. This model considers the non-linear viscosity of the fluid. The existence of weak solutions to the problem under consideration is proved on the base of the topological approximation approach. Also for the studied mathematical model the problem of optimal feedback control is considered. The existence of an optimal solution that gives a minimum to a given bounded and lower semicontinuous performance functional is proved.
Keywords: weak solution, viscoelastic fluid, non-linearly viscosity, feedback control, existence theorem.
@article{IVM_2022_6_a8,
     author = {A. V. Zvyagin},
     title = {Weak solvability of non-linearly viscous {Pavlovsky} model},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--93},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a8/}
}
TY  - JOUR
AU  - A. V. Zvyagin
TI  - Weak solvability of non-linearly viscous Pavlovsky model
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 87
EP  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_6_a8/
LA  - ru
ID  - IVM_2022_6_a8
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%T Weak solvability of non-linearly viscous Pavlovsky model
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 87-93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_6_a8/
%G ru
%F IVM_2022_6_a8
A. V. Zvyagin. Weak solvability of non-linearly viscous Pavlovsky model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 87-93. http://geodesic.mathdoc.fr/item/IVM_2022_6_a8/