Direct and inverse theorems for the approximation of functions by algebraic polynomials and splines in the norms of the Sobolev space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 79-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the one-dimensional case, interpolation weighted Besov spaces are defined, for functions from which direct and inverse estimates of the approximation error by algebraic polynomials and splines in Sobolev norms are valid. In a number of cases exact constants are indicated in the estimates. These results, as well as the inverse inequalities proved in the article, can be used to justify $p$- and $h$-$p$-finite element methods for solving boundary value problems for one-dimensional differential equations of order $2m$.
Keywords: Weighted Sobolev space, direct and inverse approximation theorem, Bernstein inequality, inverse inequality.
Mots-clés : Besov interpolation space
@article{IVM_2022_6_a7,
     author = {R. Z. Dautov},
     title = {Direct and inverse theorems for the approximation of functions by algebraic polynomials and splines in the norms of the {Sobolev} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--86},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a7/}
}
TY  - JOUR
AU  - R. Z. Dautov
TI  - Direct and inverse theorems for the approximation of functions by algebraic polynomials and splines in the norms of the Sobolev space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 79
EP  - 86
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_6_a7/
LA  - ru
ID  - IVM_2022_6_a7
ER  - 
%0 Journal Article
%A R. Z. Dautov
%T Direct and inverse theorems for the approximation of functions by algebraic polynomials and splines in the norms of the Sobolev space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 79-86
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_6_a7/
%G ru
%F IVM_2022_6_a7
R. Z. Dautov. Direct and inverse theorems for the approximation of functions by algebraic polynomials and splines in the norms of the Sobolev space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 79-86. http://geodesic.mathdoc.fr/item/IVM_2022_6_a7/

[1] Funaro D., Polynomial approximations of differential equations, Springer-Verlag, Berlin, 1992 | MR

[2] Schwab C., $p$- and $hp$- finite element methods: theory and applications to solid and fluid mechanics, Oxford Univ. Press, Oxford, 1999 | MR

[3] Widlund O., “On best error bounds for approximation by piecewise polynomial functions”, Numer. Math., 27 (1977), 327–338 | DOI | MR | Zbl

[4] Babǔska I., Kellogg R.B., Pitkäranta J., “Direct and inverse error estimates for finite elements with mesh refinements”, Numer. Math., 33 (1979), 447–471 | DOI | MR | Zbl

[5] Dorr M.R., “The Approximation Theory for the $p$-Version of the Finite Element Method”, SIAM J. Numer. Anal., 21:6 (1984), 1180–1207 | DOI | MR | Zbl

[6] Babǔska I., Guo B.Q., “Direct and inverse approximation theorems of the p-version of the finite element method in the framework of weighted Besov spaces, P. 1: approximability of functions in weighted Besov spaces”, SIAM J. Numer. Anal., 39 (2002), 1512–1538 | DOI | MR

[7] Babǔska I., Guo B.Q., “Direct and inverse approximation theorems of the p-version of the finite element method in the framework of weighted Besov spaces, Part 2: optimal rate of convergence of the p-version finite element solutions”, Math. Models Methods Appl. Sci. (M3AS), 12 (2002), 689–719 | DOI | MR | Zbl

[8] Babǔska I., Guo B.Q., “Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces, part III: Inverse approximation theorems”, J. Approximation Theory, 173 (2013), 122–157 | DOI | MR | Zbl

[9] DeVore R., Lorentz G.G., Constructive Approximation, Springer, Berlin, 1993 | MR | Zbl

[10] Szego G., Orthogonal Polynomials, Amer. Math. Soc. Collog. Publ., 23, 4th edition, Amer. Math. Soc., Providence, RI, 1975 | MR | Zbl

[11] Guo B.-Y., Shen J., Wang L.-L., “Generalized Jacobi polynomials/functions and their applications”, Appl. Numerical Math., 59 (2009), 1011-1028 | DOI | MR | Zbl

[12] Guessab A., Milovanoviá G.V., “Weighted $L^2$-analogues of Bernstein's inequality and classical orthogonal polynomials”, J. Math. Anal. Appl., 182 (1994), 244–249 | DOI | MR | Zbl

[13] Dautov R.Z., Timerbaev M.R., “Sharp estimates for the polynomial approximation in weighted Sobolev spaces”, Diff. Equat., 51:7 (2015), 886–894 | DOI | MR | Zbl

[14] Triebel H., Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978 | MR | Zbl