On the nonlocal problem for a hyperbolic equation with a parabolic degeneration
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 60-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlocal problem for the second-order partial differential equation is investigated in the characteristic region. The given equation is the equation of two independent variables $x$, $y$. The given equation is an equation of hyperbolic type in the half-plane $y>0$ with parabolic degeneracy at $y=0$. The line of parabolic degeneracy $y = 0$ represents the geometric locus of the cusp points of the characteristic curves. The novelty of the statement of the problem lies in the fact that the boundary condition contains a linear combination of the operators $D_{0x}^{\alpha}$ and $D_{x1}^{\alpha}$. These operators for $ \alpha>0 $ are fractional differentiation operators of order $ \alpha $, and for $ \alpha 0 $ they coincide with the Riemann-Liouville fractional integration operator of order $ \alpha $. The unique solvability of the posed problem is proved for various values of the orders of the operators included in the boundary condition. The properties of the operators of fractional integro-differentiation and the properties of the Gauss hypergeometric function are used in the proof. The solution of the problem is given in explicit form.
Keywords: boundary value problem, operator of fractional integration, operator of fractional differentiation, hypergeometric function.
Mots-clés : Euler-Darboux equation
@article{IVM_2022_6_a5,
     author = {A. V. Tarasenko and J. O. Yakovleva},
     title = {On the nonlocal problem for a hyperbolic equation with a parabolic degeneration},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--66},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a5/}
}
TY  - JOUR
AU  - A. V. Tarasenko
AU  - J. O. Yakovleva
TI  - On the nonlocal problem for a hyperbolic equation with a parabolic degeneration
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 60
EP  - 66
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_6_a5/
LA  - ru
ID  - IVM_2022_6_a5
ER  - 
%0 Journal Article
%A A. V. Tarasenko
%A J. O. Yakovleva
%T On the nonlocal problem for a hyperbolic equation with a parabolic degeneration
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 60-66
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_6_a5/
%G ru
%F IVM_2022_6_a5
A. V. Tarasenko; J. O. Yakovleva. On the nonlocal problem for a hyperbolic equation with a parabolic degeneration. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 60-66. http://geodesic.mathdoc.fr/item/IVM_2022_6_a5/

[1] Nakhushev A.M., Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[2] Nakhushev A.M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995

[3] Chi Min-Yu., “O zadache Koshi dlya odnogo klassa giperbolicheskikh uravnenii s nachalnymi dannymi na linii parabolicheskogo vyrozhdeniya”, Acta Math. Sinica, 8 (1958), 521–530

[4] Karapetyap K.I., “O zadache Koshi dlya uravneniya giperbolicheskogo tipa, vyrozhdayuschegosya na nachalnoi ploskosti”, DAN SSSR, 106 (1956), 963–966

[5] Repin O.A., “Analog zadachi Nakhusheva dlya uravneniya Bitsadze–Lykova”, Differents. uravneniya, 38:10 (2002), 1412-1417 | MR | Zbl

[6] Efimova S.V., Repin O.A., “Zadacha s nelokalnymi usloviyami na kharakteristikakh dlya uravneniya vlagoperenosa”, Differents. uravneniya, 40:10 (2004), 1419-1422 | MR | Zbl

[7] Tarasenko A.V., Egorova I.P., “O razreshimosti nelokalnoi zadachi s obobschennymi operatorami M. Saigo dlya uravneniya Bitsadze-Lykova”, Chetvertaya mezhdunarodnaya konferentsiya “Matematicheskaya fizika i ee prilozheniya”, materialy konf., eds. I.V. Volovich, V.P. Radchenko, SamGTU, Samara, 2014, 345–346

[8] Tarasenko A.V., Egorova I.P., “O razreshimosti nelokalnoi zadachi s obobschennymi operatorami M. Saigo dlya uravneniya Bitsadze–Lykova”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 4:37 (2014), 33–41 | Zbl

[9] Saigo M.A., “A certain boundary value problem for the Euler–Poisson–Darboux equation”, Math. Japon., 24:4 (1979), 377–385 | MR | Zbl

[10] Nakhusheva F.B., “Nekotorye konstruktivnye svoistva reshenii giperbolicheskogo uravneniya, vyrozhdayuschegosya vnutri oblasti”, Differents. uravneniya, 18:2 (1982), 334-340 | MR | Zbl

[11] Nakhusheva F.B., “Smeshannaya zadacha dlya uravneniya giperbolo-parabolicheskogo tipa”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 19 (2003), 161–162

[12] Darboux G., Leçons sur la theorie generale des surfaces, v. 3, Paris, 1894 | MR | Zbl

[13] Bitsadze A.V., Nekotorye klassy uravnenii v chastnykh proizvodnykh, Nauka, M., 1981 | MR

[14] Samko S.G., Kilbas A.A., Marichev O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987

[15] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973

[16] Lebedev N.N., Spetsialnye funktsii i ikh prilozheniya, Gos. izd-vo tekhn.-teoret. lit., M., 1953

[17] Agmon S., Nirenberg L., Protter M.N., “A maximum principle for a class of hyperbolic equations and applications to equations of mixed elliptic-hyperbolic type”, Comm. Pure Appl. Math., 6:4 (1953), 455–470 | DOI | MR | Zbl

[18] Nakhushev A.M., Elementy drobnogo ischisleniya i ikh primenenie, KBNTs RAN, Nalchik, 2000