Integral formulas of the type of Carleman and B. Ya.~Levin for meromorphic and subharmonic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 37-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

When studying the relationships between the distributions of the zeros of holomorphic and entire functions with the addition of distributions of poles for meromorphic functions and the growth of these functions, it is important to relate these distributions with integral or other characteristics of growth. In a more general subharmonic framework, these are the relationships between the Riesz measure of a subharmonic function or the Riesz charge for the difference of such functions and the growth characteristics of such functions. The basis of such relationships, as a rule, is a variety of integral formulas. Often a complicating factor in the use of such formulas is the presence in them of derivatives from the functions under study. The article proposes an option to get rid of such difficulties by using inversion on the plane.
Keywords: meromorphic function, distribution of zeros and poles, $\delta$-subharmonic function, Riesz measure and charge, Carleman integral formula.
@article{IVM_2022_6_a3,
     author = {E. B. Menshikova},
     title = {Integral formulas of the type of {Carleman} and {B.} {Ya.~Levin}  for meromorphic and subharmonic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--53},
     publisher = {mathdoc},
     number = {6},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a3/}
}
TY  - JOUR
AU  - E. B. Menshikova
TI  - Integral formulas of the type of Carleman and B. Ya.~Levin  for meromorphic and subharmonic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 37
EP  - 53
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_6_a3/
LA  - ru
ID  - IVM_2022_6_a3
ER  - 
%0 Journal Article
%A E. B. Menshikova
%T Integral formulas of the type of Carleman and B. Ya.~Levin  for meromorphic and subharmonic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 37-53
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_6_a3/
%G ru
%F IVM_2022_6_a3
E. B. Menshikova. Integral formulas of the type of Carleman and B. Ya.~Levin  for meromorphic and subharmonic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 37-53. http://geodesic.mathdoc.fr/item/IVM_2022_6_a3/

[1] Goldberg A.A., Ostrovskii I.V., Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[2] Levin B.Ya., Lectures on entire functions, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl

[3] Levin B.Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[4] Khabibullin B.N., “O malosti rosta na mnimoi osi tselykh funktsii eksponentsialnogo tipa s zadannymi nulyami”, Matem. zametki, 43:5 (1988), 644–650 | MR

[5] Khabibullin B.N., “Teorema edinstvennosti dlya subgarmonicheskikh funktsii konechnogo poryadka”, Matem. sb., 182:6 (1991), 811–827 | Zbl

[6] Khabibullin B.N., “Polnota sistem tselykh funktsii v prostranstvakh golomorfnykh funktsii”, Matem. zametki, 66:4 (1999), 603–616 | Zbl

[7] Khabibullin B.N., Polnota sistem eksponent i mnozhestva edinstvennosti, 4-e izd., RITs BashGU, Ufa, 2012

[8] Ransford Th., Potential Theory in the Complex Plane, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[9] Helms L.L., Introduction to potential theory, Wiley Interscience, New York–London–Sydney–Toronto, 1969 | MR | Zbl

[10] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980 | MR

[11] Arsove M.G., “Functions representable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75 (1953), 327–365 | DOI | MR | Zbl

[12] Arsove M.G., “Functions of potential type”, Trans. Amer. Math. Soc., 75 (1953), 526–551 | DOI | MR | Zbl

[13] Azarin V., Growth Theory of Subharmonic Functions, Advanced Texts, Birkhäuser, Basel–Boston–Berlin, 2009 | MR | Zbl

[14] Khabibullin B.N., Rozit A.P., “K raspredeleniyu nulevykh mnozhestv golomorfnykh funktsii”, Funkts. analiz i ego pril., 52:1 (2018), 26–42 | MR | Zbl

[15] Kshanovskyy I.P., “An analog of Poisson–Jensen formula for annuli”, Matem. Studiï (Matem. Studii), 24:2 (2005), 147–158 | MR

[16] Rubel L.A., Taylor V.A., “A Fourier series method for meromorfic and entire functions”, Bull. Soc. Math. France, 96 (1968), 53–96 | DOI | MR | Zbl

[17] Kondratyuk A.A., “Metod ryadov Fure dlya tselykh i meromorfnykh funktsii vpolne regulyarnogo rosta”, Matem. sb., 106(148):3(7) (1978), 386–408 | MR

[18] Rubel L.A., Entire and Meromorphic Functions, Verlag, NY–Berlin–Heidelberg, 1996 (with Colliander J.E.) | MR

[19] Malyutin K.G., “Ryady Fure i $\delta$-subgarmonicheskie funktsii konechnogo $\gamma$-tipa v poluploskosti”, Matem. sb., 192:6 (2001), 51–70 | Zbl

[20] Khabibullin B.N., Khabibullin F.B., “Zeros of holomorphic functions in the unit disk and $\rho$-trigonometrically convex functions”, Anal. and Math. Physics, 9:3 (2019), 1087–1098 | DOI | MR | Zbl

[21] Khabibullin B.N., Khabibullin F.B., “Zeros of Holomorphic Functions in the Unit Ball and Subspherical Functions”, Lobachevskii J. Math., 40:5 (2019), 648–659 | DOI | MR | Zbl