Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_6_a2, author = {E. Yu. Lerner}, title = {Instances of small size with no stable matching for three-sided problem with complete cyclic preferences}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {26--36}, publisher = {mathdoc}, number = {6}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_6_a2/} }
TY - JOUR AU - E. Yu. Lerner TI - Instances of small size with no stable matching for three-sided problem with complete cyclic preferences JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 26 EP - 36 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_6_a2/ LA - ru ID - IVM_2022_6_a2 ER -
E. Yu. Lerner. Instances of small size with no stable matching for three-sided problem with complete cyclic preferences. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2022), pp. 26-36. http://geodesic.mathdoc.fr/item/IVM_2022_6_a2/
[1] Lam C.-K., Plaxton C.G., “On the Existence of Three-Dimensional Stable Matchings with Cyclic Preferences”, Algorithmic Game Theory, Lect. Notes in Comput. Sci., 11801, Springer, 2019, 329–342, arXiv: 1905.02844 | DOI | MR | Zbl
[2] Eriksson K., Söstrand J., Strimling P., “Three-dimensional stable matching with cyclic preferences”, Math. Soc. Sci., 52 (2006), 77–87 | DOI | MR | Zbl
[3] Lerner E.Yu., Lerner R.E., “Minimal instances with no weakly stable matching for three-sided problem with cyclic incomplete preferences.”, Discrete Math., Algorithms and Appl., 2021 (to appear) | DOI
[4] Biró P., McDermid E., “Three-sided stable matchings with cyclic preferences”, Algorithmica, 58 (2010), 5–18 | DOI | MR | Zbl
[5] Gale D., Shapley L.S., “College admissions and the stability of marriage”, Am. Math. Mon., 69 (1962), 9–15 | DOI | MR | Zbl
[6] Knuth D.E., Stable marriage and its relation to other combinatorial problems: an introduction to the mathematical analysis of algorithms, CRM Proceedings and Lecture Notes, 10, American Math. Society, 1996 | DOI | MR | Zbl
[7] Lerner E.Yu., “Sootvetstvie zadach ob ustoichivom parosochetanii i o naznachenii”, Izv. vuzov. Matem., 2011, no. 11, 34–40 | Zbl
[8] Manlove D.F., Algorithmics of matching under preferences, Theor. Comput. Sci., World Sci., 2013 | MR | Zbl
[9] Boros E., Gurvich V., Jaslar S., Krasner D., “Stable matchings in three-sided systems with cyclic preferences”, Discrete Math., 289:1–3 (2004), 1–10 | MR | Zbl
[10] Pashkovich K., Poirrier L. “Three-dimensional stable matching with cyclic preferences”, Optimization Letters, 14 (2020), 2615–2623 | DOI | MR | Zbl
[11] Pittel B., “On random stable matchings: Cyclic ones with strict preferences and two-sided ones with partially ordered preferences”, Advances in Appl. Math., 120:3 (2020), 1–27 | MR
[12] Lerner E.Yu., Instances of small size with no weakly stable matching for three-sided problem with complete cyclic preferences, 2021, arXiv: 2107.10102v1
[13] Blair C., “Every finite distributive lattice is a set of stable matchings”, J. Combinatorial Theory, Ser. A, 37:3 (1984), 353–356 | DOI | MR | Zbl
[14] Gusfield D., Irving R.W., Leather P., Saks M., “Every finite distributive lattice is a set of stable matchings for a small stable marriage instance”, J. Combinatorial Theory, A44 (1987), 304–309 | DOI | MR | Zbl
[15] Irving R.W., Leather P., “The complexity of counting stable marriages”, SIAM J. Computing, 15:3 (1986), 655–667 | DOI | MR | Zbl
[16] Gusfield D., Irving R.W., The Stable Marriage Problem-Structure and Algorithms, The MIT Press, Cambridge, MA, 1989 | MR | Zbl
[17] Danilov V.I., “Existence of stable matchings in some three-sided systems”, Math. Social Sci., 46:2 (2003), 145–148 | DOI | MR | Zbl