Approximation of the Lebesgue constant of the Fourier operator by a logarithmic function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 86-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lebesgue constant of the classical Fourier operator is uniformly approximated by a family of logarithmic functions that depend on two parameters. The case where the corresponding residual term has non-monotonic behavior is considered. The obtained result of Lebesgue constant approximation by indicated family of functions strengthens the known results corresponding to cases of strict decrease and increase of the residual term. Various modifications of the logarithmic approximation are studied.
Keywords: Fourier series, asymptotic formula, extreme problem.
Mots-clés : Lebesgue constant of Fourier operator, two-sided Lebesgue constant estimate
@article{IVM_2022_5_a7,
     author = {I. A. Shakirov},
     title = {Approximation of the {Lebesgue} constant of the {Fourier} operator by a logarithmic function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--93},
     publisher = {mathdoc},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a7/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - Approximation of the Lebesgue constant of the Fourier operator by a logarithmic function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 86
EP  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_5_a7/
LA  - ru
ID  - IVM_2022_5_a7
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T Approximation of the Lebesgue constant of the Fourier operator by a logarithmic function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 86-93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_5_a7/
%G ru
%F IVM_2022_5_a7
I. A. Shakirov. Approximation of the Lebesgue constant of the Fourier operator by a logarithmic function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 86-93. http://geodesic.mathdoc.fr/item/IVM_2022_5_a7/

[1] Fejer L., “Sur les singularités de la série de Fourier des fonctions continues”, Ann. de Ec. Norm., 28 (1911), 63–103 | MR | Zbl

[2] Szego G., “Uber die Lebesgueschen Konstanten bei den Fourierchen Reihen”, Math. Z., 9:1–2 (1921), 163–166 | DOI | MR | Zbl

[3] Hardy G. H., “Note on Lebesgués Constants in the Theory of Fourier Series”, J. London Math. Soc., s1–17:1 (1942), 4–13 | DOI | MR

[4] Fejer L., “Lebesguesche Konstanten und divergente Fourierreihen”, J. Reine Angew. Math., 138 (1910), 22–53 | DOI | MR | Zbl

[5] Watson G. H., “The constant of Landau and Lebesgue”, Quart. J. Math., Oxford. Ser. 1, 1930, no. 2, 310–318 | DOI | Zbl

[6] Zhao D., “Some sharp estimates of the constants of Landau and Lebesgue”, J. Math. Anal. Appl., 349 (2009), 68–73 | DOI | MR | Zbl

[7] Chen C., Choi J., “Inequalities and asymptotic expansions for the constants of Landau and Lebesgue”, Appl. Math. Comput., 248 (2014), 610–624 | MR | Zbl

[8] Chen C., Choi J., “Unified treatment of several asymptotic expansions concerning some mathematical constant”, Appl. Math. Comput., 305 (2017), 348–363 | MR | Zbl

[9] Galkin P. V., “Otsenki dlya konstant Lebega”, Tr. MIAN SSSR, 109, 1971, 3–5 | MR | Zbl

[10] Zhuk V. V., Natanson G. I., Trigonometricheskie ryady Fure i elementy teorii approksimatsii, Uchebnoe posobie, Izd-vo LGU, 1983 | MR

[11] Shakirov I. A., “O neuluchshaemoi dvustoronnei otsenke konstanty Lebega klassicheskogo operatora Fure”, Vestn. Kazansk. gos. energetichesk. un-ta, 34, no. 2, 2017, 7–17

[12] Shakirov I. A., “Ob optimalnom priblizhenii normy operatora Fure semeistvom logarifmicheskikh funktsii”, Itogi nauki i tekhn. Ser. Sovremen. matem. i ee prilozhenie. Temat. obz., 139, 2017, 104–113

[13] Lukashov A. L., “Ratsionalnye interpolyatsionnye protsessy na neskolkikh otrezkakh”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 5:1–2 (2005), 34–48

[14] Ehlich H., Zeller K., “Auswertung der Normen von Interpolations operatoren”, Math. Ann., 164 (1966), 105–112 | DOI | MR | Zbl

[15] Dzyadyk V. K., Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Nauk. dumka, Kiev, 1988 | MR

[16] Shakirov I. A., “O fundamentalnykh kharakteristikakh semeistva interpolyatsionnykh polinomov Lagranzha”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 13:1(2) (2013), 99–104 | Zbl

[17] Shakirov I. A., “Approximation of the Lebesgue constant of a Lagrange polynomial by a logarithmic function with shifted argument”, J. Math. Sci., 252:3 (2021), 445–452 | DOI | Zbl

[18] Shakirov I. A., “About the Optimal Replacement of the Lebesque Constant Fourier Operator by a Logarithmic Function”, Lobachevskii J. Math., 39:6 (2018), 841–846 | DOI | MR | Zbl

[19] Shakirov I. A., “On optimal approximations of the norm of the Fourier operator by a family of logarithmic functions”, J. Math. Sci., 241:3 (2019), 354–363 | DOI | MR | Zbl