Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_5_a7, author = {I. A. Shakirov}, title = {Approximation of the {Lebesgue} constant of the {Fourier} operator by a logarithmic function}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {86--93}, publisher = {mathdoc}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a7/} }
TY - JOUR AU - I. A. Shakirov TI - Approximation of the Lebesgue constant of the Fourier operator by a logarithmic function JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 86 EP - 93 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_5_a7/ LA - ru ID - IVM_2022_5_a7 ER -
I. A. Shakirov. Approximation of the Lebesgue constant of the Fourier operator by a logarithmic function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 86-93. http://geodesic.mathdoc.fr/item/IVM_2022_5_a7/
[1] Fejer L., “Sur les singularités de la série de Fourier des fonctions continues”, Ann. de Ec. Norm., 28 (1911), 63–103 | MR | Zbl
[2] Szego G., “Uber die Lebesgueschen Konstanten bei den Fourierchen Reihen”, Math. Z., 9:1–2 (1921), 163–166 | DOI | MR | Zbl
[3] Hardy G. H., “Note on Lebesgués Constants in the Theory of Fourier Series”, J. London Math. Soc., s1–17:1 (1942), 4–13 | DOI | MR
[4] Fejer L., “Lebesguesche Konstanten und divergente Fourierreihen”, J. Reine Angew. Math., 138 (1910), 22–53 | DOI | MR | Zbl
[5] Watson G. H., “The constant of Landau and Lebesgue”, Quart. J. Math., Oxford. Ser. 1, 1930, no. 2, 310–318 | DOI | Zbl
[6] Zhao D., “Some sharp estimates of the constants of Landau and Lebesgue”, J. Math. Anal. Appl., 349 (2009), 68–73 | DOI | MR | Zbl
[7] Chen C., Choi J., “Inequalities and asymptotic expansions for the constants of Landau and Lebesgue”, Appl. Math. Comput., 248 (2014), 610–624 | MR | Zbl
[8] Chen C., Choi J., “Unified treatment of several asymptotic expansions concerning some mathematical constant”, Appl. Math. Comput., 305 (2017), 348–363 | MR | Zbl
[9] Galkin P. V., “Otsenki dlya konstant Lebega”, Tr. MIAN SSSR, 109, 1971, 3–5 | MR | Zbl
[10] Zhuk V. V., Natanson G. I., Trigonometricheskie ryady Fure i elementy teorii approksimatsii, Uchebnoe posobie, Izd-vo LGU, 1983 | MR
[11] Shakirov I. A., “O neuluchshaemoi dvustoronnei otsenke konstanty Lebega klassicheskogo operatora Fure”, Vestn. Kazansk. gos. energetichesk. un-ta, 34, no. 2, 2017, 7–17
[12] Shakirov I. A., “Ob optimalnom priblizhenii normy operatora Fure semeistvom logarifmicheskikh funktsii”, Itogi nauki i tekhn. Ser. Sovremen. matem. i ee prilozhenie. Temat. obz., 139, 2017, 104–113
[13] Lukashov A. L., “Ratsionalnye interpolyatsionnye protsessy na neskolkikh otrezkakh”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 5:1–2 (2005), 34–48
[14] Ehlich H., Zeller K., “Auswertung der Normen von Interpolations operatoren”, Math. Ann., 164 (1966), 105–112 | DOI | MR | Zbl
[15] Dzyadyk V. K., Approksimatsionnye metody resheniya differentsialnykh i integralnykh uravnenii, Nauk. dumka, Kiev, 1988 | MR
[16] Shakirov I. A., “O fundamentalnykh kharakteristikakh semeistva interpolyatsionnykh polinomov Lagranzha”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 13:1(2) (2013), 99–104 | Zbl
[17] Shakirov I. A., “Approximation of the Lebesgue constant of a Lagrange polynomial by a logarithmic function with shifted argument”, J. Math. Sci., 252:3 (2021), 445–452 | DOI | Zbl
[18] Shakirov I. A., “About the Optimal Replacement of the Lebesque Constant Fourier Operator by a Logarithmic Function”, Lobachevskii J. Math., 39:6 (2018), 841–846 | DOI | MR | Zbl
[19] Shakirov I. A., “On optimal approximations of the norm of the Fourier operator by a family of logarithmic functions”, J. Math. Sci., 241:3 (2019), 354–363 | DOI | MR | Zbl